Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -108,104 +108,15 @@
|
|
108 |
# demo.launch(share=False)
|
109 |
|
110 |
|
111 |
-
# import gradio as gr
|
112 |
-
# from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
113 |
-
# from transformers.image_utils import load_image
|
114 |
-
# from threading import Thread
|
115 |
-
# import time
|
116 |
-
# import torch
|
117 |
-
# import spaces
|
118 |
-
|
119 |
-
# MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct"
|
120 |
-
# processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
121 |
-
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
122 |
-
# MODEL_ID,
|
123 |
-
# trust_remote_code=True,
|
124 |
-
# torch_dtype=torch.bfloat16
|
125 |
-
# ).to("cuda").eval()
|
126 |
-
|
127 |
-
# @spaces.GPU(duration=200)
|
128 |
-
# def model_inference(input_dict, history):
|
129 |
-
# text = input_dict["text"]
|
130 |
-
# files = input_dict["files"]
|
131 |
-
|
132 |
-
# # Load images if provided
|
133 |
-
# if len(files) > 1:
|
134 |
-
# images = [load_image(image) for image in files]
|
135 |
-
# elif len(files) == 1:
|
136 |
-
# images = [load_image(files[0])]
|
137 |
-
# else:
|
138 |
-
# images = []
|
139 |
-
|
140 |
-
# # Validate input
|
141 |
-
# if text == "" and not images:
|
142 |
-
# gr.Error("Please input a query and optionally image(s).")
|
143 |
-
# return
|
144 |
-
# if text == "" and images:
|
145 |
-
# gr.Error("Please input a text query along with the image(s).")
|
146 |
-
# return
|
147 |
-
|
148 |
-
# # Prepare messages for the model
|
149 |
-
# messages = [
|
150 |
-
# {
|
151 |
-
# "role": "user",
|
152 |
-
# "content": [
|
153 |
-
# *[{"type": "image", "image": image} for image in images],
|
154 |
-
# {"type": "text", "text": text},
|
155 |
-
# ],
|
156 |
-
# }
|
157 |
-
# ]
|
158 |
-
|
159 |
-
# # Apply chat template and process inputs
|
160 |
-
# prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
161 |
-
# inputs = processor(
|
162 |
-
# text=[prompt],
|
163 |
-
# images=images if images else None,
|
164 |
-
# return_tensors="pt",
|
165 |
-
# padding=True,
|
166 |
-
# ).to("cuda")
|
167 |
-
|
168 |
-
# # Set up streamer for real-time output
|
169 |
-
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
170 |
-
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
|
171 |
-
|
172 |
-
# # Start generation in a separate thread
|
173 |
-
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
174 |
-
# thread.start()
|
175 |
-
|
176 |
-
# # Stream the output
|
177 |
-
# buffer = ""
|
178 |
-
# yield "Thinking..."
|
179 |
-
# for new_text in streamer:
|
180 |
-
# buffer += new_text
|
181 |
-
# time.sleep(0.01)
|
182 |
-
# yield buffer
|
183 |
-
|
184 |
-
# examples = [
|
185 |
-
# [{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
|
186 |
-
# ]
|
187 |
-
|
188 |
-
# demo = gr.ChatInterface(
|
189 |
-
# fn=model_inference,
|
190 |
-
# description="# **🦖 Fancy-MLLM/R1-OneVision-7B**",
|
191 |
-
# examples=examples,
|
192 |
-
# textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
193 |
-
# stop_btn="Stop Generation",
|
194 |
-
# multimodal=True,
|
195 |
-
# cache_examples=False,
|
196 |
-
# )
|
197 |
-
|
198 |
-
# demo.launch(debug=True)
|
199 |
-
|
200 |
import gradio as gr
|
201 |
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
202 |
from transformers.image_utils import load_image
|
203 |
from threading import Thread
|
204 |
import time
|
205 |
import torch
|
|
|
206 |
|
207 |
-
|
208 |
-
MODEL_ID = "Fancy-MLLM/R1-OneVision-7B"
|
209 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
210 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
211 |
MODEL_ID,
|
@@ -213,11 +124,12 @@ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
213 |
torch_dtype=torch.bfloat16
|
214 |
).to("cuda").eval()
|
215 |
|
|
|
216 |
def model_inference(input_dict, history):
|
217 |
text = input_dict["text"]
|
218 |
files = input_dict["files"]
|
219 |
|
220 |
-
#
|
221 |
if len(files) > 1:
|
222 |
images = [load_image(image) for image in files]
|
223 |
elif len(files) == 1:
|
@@ -225,13 +137,15 @@ def model_inference(input_dict, history):
|
|
225 |
else:
|
226 |
images = []
|
227 |
|
228 |
-
#
|
229 |
if text == "" and not images:
|
230 |
-
|
|
|
231 |
if text == "" and images:
|
232 |
-
|
|
|
233 |
|
234 |
-
#
|
235 |
messages = [
|
236 |
{
|
237 |
"role": "user",
|
@@ -242,7 +156,7 @@ def model_inference(input_dict, history):
|
|
242 |
}
|
243 |
]
|
244 |
|
245 |
-
#
|
246 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
247 |
inputs = processor(
|
248 |
text=[prompt],
|
@@ -251,44 +165,55 @@ def model_inference(input_dict, history):
|
|
251 |
padding=True,
|
252 |
).to("cuda")
|
253 |
|
254 |
-
#
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
259 |
-
generation_kwargs = dict(
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
|
|
|
|
|
|
|
|
266 |
thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
-
# 生成过程中更新UI
|
269 |
-
buffer = ""
|
270 |
-
yield "Processing your request, please wait..."
|
271 |
-
for new_text in streamer:
|
272 |
-
buffer += new_text
|
273 |
-
time.sleep(0.01) # 给UI流畅更新的时间
|
274 |
-
yield buffer
|
275 |
-
|
276 |
-
# 示例输入
|
277 |
examples = [
|
278 |
[{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
|
279 |
]
|
280 |
|
281 |
-
|
282 |
-
demo = gr.Interface(
|
283 |
fn=model_inference,
|
284 |
description="# **🦖 Fancy-MLLM/R1-OneVision-7B**",
|
285 |
examples=examples,
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
allow_flagging="never",
|
290 |
-
layout="vertical",
|
291 |
-
title="Multimodal Inference with Fancy-MLLM",
|
292 |
cache_examples=False,
|
293 |
)
|
294 |
|
|
|
108 |
# demo.launch(share=False)
|
109 |
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
import gradio as gr
|
112 |
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
113 |
from transformers.image_utils import load_image
|
114 |
from threading import Thread
|
115 |
import time
|
116 |
import torch
|
117 |
+
import spaces
|
118 |
|
119 |
+
MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct"
|
|
|
120 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
121 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
122 |
MODEL_ID,
|
|
|
124 |
torch_dtype=torch.bfloat16
|
125 |
).to("cuda").eval()
|
126 |
|
127 |
+
@spaces.GPU(duration=200)
|
128 |
def model_inference(input_dict, history):
|
129 |
text = input_dict["text"]
|
130 |
files = input_dict["files"]
|
131 |
|
132 |
+
# Load images if provided
|
133 |
if len(files) > 1:
|
134 |
images = [load_image(image) for image in files]
|
135 |
elif len(files) == 1:
|
|
|
137 |
else:
|
138 |
images = []
|
139 |
|
140 |
+
# Validate input
|
141 |
if text == "" and not images:
|
142 |
+
gr.Error("Please input a query and optionally image(s).")
|
143 |
+
return
|
144 |
if text == "" and images:
|
145 |
+
gr.Error("Please input a text query along with the image(s).")
|
146 |
+
return
|
147 |
|
148 |
+
# Prepare messages for the model
|
149 |
messages = [
|
150 |
{
|
151 |
"role": "user",
|
|
|
156 |
}
|
157 |
]
|
158 |
|
159 |
+
# Apply chat template and process inputs
|
160 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
161 |
inputs = processor(
|
162 |
text=[prompt],
|
|
|
165 |
padding=True,
|
166 |
).to("cuda")
|
167 |
|
168 |
+
# # Set up streamer for real-time output
|
169 |
+
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
170 |
+
# generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
|
171 |
+
|
172 |
+
# # Start generation in a separate thread
|
173 |
+
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
174 |
+
# thread.start()
|
175 |
+
|
176 |
+
# # Stream the output
|
177 |
+
# buffer = ""
|
178 |
+
# yield "Thinking..."
|
179 |
+
# for new_text in streamer:
|
180 |
+
# buffer += new_text
|
181 |
+
# time.sleep(0.01)
|
182 |
+
# yield buffer
|
183 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
184 |
+
generation_kwargs = dict(
|
185 |
+
**inputs,
|
186 |
+
streamer=streamer,
|
187 |
+
max_new_tokens=2048,
|
188 |
+
top_p=0.001,
|
189 |
+
top_k=1,
|
190 |
+
temperature=0.01,
|
191 |
+
repetition_penalty=1.0,
|
192 |
+
)
|
193 |
+
|
194 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
195 |
thread.start()
|
196 |
+
generated_text = ''
|
197 |
+
|
198 |
+
try:
|
199 |
+
for new_text in streamer:
|
200 |
+
generated_text += new_text
|
201 |
+
yield generated_text
|
202 |
+
except Exception as e:
|
203 |
+
print(f"Error: {e}")
|
204 |
+
yield f"Error occurred: {str(e)}"
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
examples = [
|
207 |
[{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
|
208 |
]
|
209 |
|
210 |
+
demo = gr.ChatInterface(
|
|
|
211 |
fn=model_inference,
|
212 |
description="# **🦖 Fancy-MLLM/R1-OneVision-7B**",
|
213 |
examples=examples,
|
214 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
215 |
+
stop_btn="Stop Generation",
|
216 |
+
multimodal=True,
|
|
|
|
|
|
|
217 |
cache_examples=False,
|
218 |
)
|
219 |
|