Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -222,20 +222,19 @@
|
|
222 |
|
223 |
import os
|
224 |
from datetime import datetime
|
225 |
-
import subprocess
|
226 |
import time
|
|
|
227 |
|
228 |
# Third-party imports
|
229 |
import numpy as np
|
230 |
import torch
|
231 |
from PIL import Image
|
232 |
-
import accelerate
|
233 |
import gradio as gr
|
234 |
import spaces
|
235 |
from transformers import (
|
236 |
Qwen2_5_VLForConditionalGeneration,
|
237 |
-
|
238 |
-
|
239 |
)
|
240 |
|
241 |
# Local imports
|
@@ -251,7 +250,6 @@ else:
|
|
251 |
|
252 |
print(f"[INFO] Using device: {device}")
|
253 |
|
254 |
-
|
255 |
def array_to_image_path(image_array):
|
256 |
if image_array is None:
|
257 |
raise ValueError("No image provided. Please upload an image before submitting.")
|
@@ -269,7 +267,7 @@ def array_to_image_path(image_array):
|
|
269 |
full_path = os.path.abspath(filename)
|
270 |
|
271 |
return full_path
|
272 |
-
|
273 |
models = {
|
274 |
"Fancy-MLLM/R1-OneVision-7B": Qwen2_5_VLForConditionalGeneration.from_pretrained("Fancy-MLLM/R1-OneVision-7B",
|
275 |
trust_remote_code=True,
|
@@ -291,55 +289,70 @@ assistant_prompt = '<|assistant|>\n'
|
|
291 |
prompt_suffix = "<|end|>\n"
|
292 |
|
293 |
@spaces.GPU
|
294 |
-
def
|
295 |
-
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
|
|
|
|
|
|
|
|
303 |
messages = [
|
304 |
-
|
305 |
"role": "user",
|
306 |
"content": [
|
307 |
-
{
|
308 |
-
|
309 |
-
"image": image_path,
|
310 |
-
},
|
311 |
-
{"type": "text", "text": text_input},
|
312 |
],
|
313 |
}
|
314 |
]
|
315 |
|
316 |
-
#
|
317 |
-
|
318 |
-
messages, tokenize=False, add_generation_prompt=True
|
319 |
-
)
|
320 |
image_inputs, video_inputs = process_vision_info(messages)
|
321 |
-
inputs =
|
322 |
-
text=[
|
323 |
images=image_inputs,
|
324 |
videos=video_inputs,
|
325 |
padding=True,
|
326 |
return_tensors="pt",
|
327 |
-
)
|
328 |
-
|
|
|
|
|
329 |
|
330 |
-
#
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
|
|
337 |
)
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
css = """
|
345 |
#output {
|
@@ -354,18 +367,18 @@ with gr.Blocks(css=css) as demo:
|
|
354 |
with gr.Tab(label="R1-OneVision-7B Input"):
|
355 |
with gr.Row():
|
356 |
with gr.Column():
|
357 |
-
input_img = gr.Image(label="Input Picture")
|
358 |
model_selector = gr.Dropdown(choices=list(models.keys()),
|
359 |
label="Model",
|
360 |
value="Fancy-MLLM/R1-OneVision-7B")
|
361 |
text_input = gr.Textbox(label="Text Prompt")
|
362 |
submit_btn = gr.Button(value="Submit")
|
363 |
with gr.Column():
|
364 |
-
output_text = gr.Textbox(label="Output Text")
|
365 |
-
time_taken = gr.Textbox(label="Time taken for processing + inference")
|
366 |
|
367 |
-
submit_btn.click(
|
368 |
|
369 |
demo.queue(api_open=False)
|
370 |
demo.launch(debug=True)
|
371 |
|
|
|
|
222 |
|
223 |
import os
|
224 |
from datetime import datetime
|
|
|
225 |
import time
|
226 |
+
from threading import Thread
|
227 |
|
228 |
# Third-party imports
|
229 |
import numpy as np
|
230 |
import torch
|
231 |
from PIL import Image
|
|
|
232 |
import gradio as gr
|
233 |
import spaces
|
234 |
from transformers import (
|
235 |
Qwen2_5_VLForConditionalGeneration,
|
236 |
+
AutoProcessor,
|
237 |
+
TextIteratorStreamer
|
238 |
)
|
239 |
|
240 |
# Local imports
|
|
|
250 |
|
251 |
print(f"[INFO] Using device: {device}")
|
252 |
|
|
|
253 |
def array_to_image_path(image_array):
|
254 |
if image_array is None:
|
255 |
raise ValueError("No image provided. Please upload an image before submitting.")
|
|
|
267 |
full_path = os.path.abspath(filename)
|
268 |
|
269 |
return full_path
|
270 |
+
|
271 |
models = {
|
272 |
"Fancy-MLLM/R1-OneVision-7B": Qwen2_5_VLForConditionalGeneration.from_pretrained("Fancy-MLLM/R1-OneVision-7B",
|
273 |
trust_remote_code=True,
|
|
|
289 |
prompt_suffix = "<|end|>\n"
|
290 |
|
291 |
@spaces.GPU
|
292 |
+
def model_inference(input_dict, history):
|
293 |
+
text = input_dict["text"]
|
294 |
+
files = input_dict["files"]
|
295 |
+
|
296 |
+
# Load images if provided
|
297 |
+
images = []
|
298 |
+
if len(files) > 0:
|
299 |
+
images = [array_to_image_path(image) for image in files]
|
300 |
|
301 |
+
# Validate input
|
302 |
+
if text == "" and not images:
|
303 |
+
yield "Error: Please input a query and optionally image(s)."
|
304 |
+
return
|
305 |
+
if text == "" and images:
|
306 |
+
yield "Error: Please input a text query along with the image(s)."
|
307 |
+
return
|
308 |
+
|
309 |
+
# Prepare messages for the model
|
310 |
messages = [
|
311 |
+
{
|
312 |
"role": "user",
|
313 |
"content": [
|
314 |
+
*[{"type": "image", "image": image} for image in images],
|
315 |
+
{"type": "text", "text": text},
|
|
|
|
|
|
|
316 |
],
|
317 |
}
|
318 |
]
|
319 |
|
320 |
+
# Apply chat template and process inputs
|
321 |
+
prompt = processors["Fancy-MLLM/R1-OneVision-7B"].apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
322 |
image_inputs, video_inputs = process_vision_info(messages)
|
323 |
+
inputs = processors["Fancy-MLLM/R1-OneVision-7B"](
|
324 |
+
text=[prompt],
|
325 |
images=image_inputs,
|
326 |
videos=video_inputs,
|
327 |
padding=True,
|
328 |
return_tensors="pt",
|
329 |
+
).to(device)
|
330 |
+
|
331 |
+
# Set up streamer for real-time output
|
332 |
+
streamer = TextIteratorStreamer(processors["Fancy-MLLM/R1-OneVision-7B"], skip_prompt=True, skip_special_tokens=True)
|
333 |
|
334 |
+
# Define the generation parameters
|
335 |
+
generation_kwargs = dict(
|
336 |
+
**inputs,
|
337 |
+
streamer=streamer,
|
338 |
+
max_new_tokens=2048,
|
339 |
+
top_p=0.001,
|
340 |
+
top_k=1,
|
341 |
+
temperature=0.01,
|
342 |
+
repetition_penalty=1.0,
|
343 |
)
|
344 |
|
345 |
+
# Start generation in a separate thread
|
346 |
+
thread = Thread(target=models["Fancy-MLLM/R1-OneVision-7B"].generate, kwargs=generation_kwargs)
|
347 |
+
thread.start()
|
348 |
+
|
349 |
+
# Stream the output
|
350 |
+
buffer = ""
|
351 |
+
yield "Thinking..."
|
352 |
+
for new_text in streamer:
|
353 |
+
buffer += new_text
|
354 |
+
time.sleep(0.01)
|
355 |
+
yield buffer
|
356 |
|
357 |
css = """
|
358 |
#output {
|
|
|
367 |
with gr.Tab(label="R1-OneVision-7B Input"):
|
368 |
with gr.Row():
|
369 |
with gr.Column():
|
370 |
+
input_img = gr.Image(label="Input Picture", type="numpy", elem_id="image_input")
|
371 |
model_selector = gr.Dropdown(choices=list(models.keys()),
|
372 |
label="Model",
|
373 |
value="Fancy-MLLM/R1-OneVision-7B")
|
374 |
text_input = gr.Textbox(label="Text Prompt")
|
375 |
submit_btn = gr.Button(value="Submit")
|
376 |
with gr.Column():
|
377 |
+
output_text = gr.Textbox(label="Output Text", elem_id="output_text", lines=10)
|
|
|
378 |
|
379 |
+
submit_btn.click(model_inference, [input_img, text_input, model_selector], [output_text])
|
380 |
|
381 |
demo.queue(api_open=False)
|
382 |
demo.launch(debug=True)
|
383 |
|
384 |
+
|