Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,240 +1,19 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
3 |
-
# from threading import Thread
|
4 |
-
# from qwen_vl_utils import process_vision_info
|
5 |
-
# import torch
|
6 |
-
# import time
|
7 |
-
|
8 |
-
# # Check if a GPU is available
|
9 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
|
11 |
-
# local_path = "Fancy-MLLM/R1-OneVision-7B"
|
12 |
-
|
13 |
-
# # Load the model on the appropriate device (GPU if available, otherwise CPU)
|
14 |
-
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
15 |
-
# local_path, torch_dtype="auto", device_map=device
|
16 |
-
# )
|
17 |
-
# processor = AutoProcessor.from_pretrained(local_path)
|
18 |
-
|
19 |
-
# def generate_output(image, text, button_click):
|
20 |
-
# # Prepare input data
|
21 |
-
# messages = [
|
22 |
-
# {
|
23 |
-
# "role": "user",
|
24 |
-
# "content": [
|
25 |
-
# {"type": "image", "image": image, 'min_pixels': 1003520, 'max_pixels': 12845056},
|
26 |
-
# {"type": "text", "text": text},
|
27 |
-
# ],
|
28 |
-
# }
|
29 |
-
# ]
|
30 |
-
|
31 |
-
# # Prepare inputs for the model
|
32 |
-
# text_input = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
33 |
-
# image_inputs, video_inputs = process_vision_info(messages)
|
34 |
-
# inputs = processor(
|
35 |
-
# text=[text_input],
|
36 |
-
# images=image_inputs,
|
37 |
-
# videos=video_inputs,
|
38 |
-
# padding=True,
|
39 |
-
# return_tensors="pt",
|
40 |
-
# )
|
41 |
-
|
42 |
-
# # Move inputs to the same device as the model
|
43 |
-
# inputs = inputs.to(model.device)
|
44 |
-
|
45 |
-
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
46 |
-
# generation_kwargs = dict(
|
47 |
-
# **inputs,
|
48 |
-
# streamer=streamer,
|
49 |
-
# max_new_tokens=4096,
|
50 |
-
# top_p=0.001,
|
51 |
-
# top_k=1,
|
52 |
-
# temperature=0.01,
|
53 |
-
# repetition_penalty=1.0,
|
54 |
-
# )
|
55 |
-
|
56 |
-
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
57 |
-
# thread.start()
|
58 |
-
# generated_text = ''
|
59 |
-
|
60 |
-
# try:
|
61 |
-
# for new_text in streamer:
|
62 |
-
# generated_text += new_text
|
63 |
-
# yield f"{generated_text}"
|
64 |
-
# except Exception as e:
|
65 |
-
# print(f"Error: {e}")
|
66 |
-
# yield f"Error occurred: {str(e)}"
|
67 |
-
|
68 |
-
# Css = """
|
69 |
-
# #output-markdown {
|
70 |
-
# overflow-y: auto;
|
71 |
-
# white-space: pre-wrap;
|
72 |
-
# word-wrap: break-word;
|
73 |
-
# }
|
74 |
-
# #output-markdown .math {
|
75 |
-
# overflow-x: auto;
|
76 |
-
# max-width: 100%;
|
77 |
-
# }
|
78 |
-
# .markdown-text {
|
79 |
-
# white-space: pre-wrap;
|
80 |
-
# word-wrap: break-word;
|
81 |
-
# }
|
82 |
-
# .markdown-output {
|
83 |
-
# min-height: 20vh;
|
84 |
-
# max-width: 100%;
|
85 |
-
# overflow-y: auto;
|
86 |
-
# }
|
87 |
-
# #qwen-md .katex-display { display: inline; }
|
88 |
-
# #qwen-md .katex-display>.katex { display: inline; }
|
89 |
-
# #qwen-md .katex-display>.katex>.katex-html { display: inline; }
|
90 |
-
# """
|
91 |
-
|
92 |
-
# with gr.Blocks(css=Css) as demo:
|
93 |
-
# gr.HTML("""<center><font size=8>🦖 R1-OneVision Demo</center>""")
|
94 |
-
|
95 |
-
# with gr.Row():
|
96 |
-
# with gr.Column():
|
97 |
-
# input_image = gr.Image(type="pil", label="Upload") # **改回 PIL 处理**
|
98 |
-
# input_text = gr.Textbox(label="Input your question")
|
99 |
-
# with gr.Row():
|
100 |
-
# clear_btn = gr.ClearButton([input_image, input_text])
|
101 |
-
# submit_btn = gr.Button("Submit", variant="primary")
|
102 |
-
|
103 |
-
# with gr.Column():
|
104 |
-
# output_text = gr.Markdown(elem_id="qwen-md", container=True, elem_classes="markdown-output")
|
105 |
-
|
106 |
-
# submit_btn.click(fn=generate_output, inputs=[input_image, input_text], outputs=output_text)
|
107 |
-
|
108 |
-
# demo.launch(share=False)
|
109 |
-
|
110 |
-
|
111 |
-
# import gradio as gr
|
112 |
-
# from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
113 |
-
# from transformers.image_utils import load_image
|
114 |
-
# from threading import Thread
|
115 |
-
# import time
|
116 |
-
# import torch
|
117 |
-
# import spaces
|
118 |
-
|
119 |
-
# MODEL_ID = "Fancy-MLLM/R1-OneVision-7B"
|
120 |
-
# processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
121 |
-
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
122 |
-
# MODEL_ID,
|
123 |
-
# trust_remote_code=True,
|
124 |
-
# torch_dtype=torch.bfloat16
|
125 |
-
# ).to("cuda").eval()
|
126 |
-
|
127 |
-
# @spaces.GPU(duration=200)
|
128 |
-
# def model_inference(input_dict, history):
|
129 |
-
# text = input_dict["text"]
|
130 |
-
# files = input_dict["files"]
|
131 |
-
|
132 |
-
# # Load images if provided
|
133 |
-
# if len(files) > 1:
|
134 |
-
# images = [load_image(image) for image in files]
|
135 |
-
# elif len(files) == 1:
|
136 |
-
# images = [load_image(files[0])]
|
137 |
-
# else:
|
138 |
-
# images = []
|
139 |
-
|
140 |
-
# # Validate input
|
141 |
-
# if text == "" and not images:
|
142 |
-
# gr.Error("Please input a query and optionally image(s).")
|
143 |
-
# return
|
144 |
-
# if text == "" and images:
|
145 |
-
# gr.Error("Please input a text query along with the image(s).")
|
146 |
-
# return
|
147 |
-
|
148 |
-
# # Prepare messages for the model
|
149 |
-
# messages = [
|
150 |
-
# {
|
151 |
-
# "role": "user",
|
152 |
-
# "content": [
|
153 |
-
# *[{"type": "image", "image": image} for image in images],
|
154 |
-
# {"type": "text", "text": text},
|
155 |
-
# ],
|
156 |
-
# }
|
157 |
-
# ]
|
158 |
-
|
159 |
-
# # Apply chat template and process inputs
|
160 |
-
# prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
161 |
-
# inputs = processor(
|
162 |
-
# text=[prompt],
|
163 |
-
# images=images if images else None,
|
164 |
-
# return_tensors="pt",
|
165 |
-
# padding=True,
|
166 |
-
# ).to("cuda")
|
167 |
-
|
168 |
-
# # # Set up streamer for real-time output
|
169 |
-
# # streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
170 |
-
# # generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
|
171 |
-
|
172 |
-
# # # Start generation in a separate thread
|
173 |
-
# # thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
174 |
-
# # thread.start()
|
175 |
-
|
176 |
-
# # # Stream the output
|
177 |
-
# # buffer = ""
|
178 |
-
# # yield "Thinking..."
|
179 |
-
# # for new_text in streamer:
|
180 |
-
# # buffer += new_text
|
181 |
-
# # time.sleep(0.01)
|
182 |
-
# # yield buffer
|
183 |
-
# streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
184 |
-
# generation_kwargs = dict(
|
185 |
-
# **inputs,
|
186 |
-
# streamer=streamer,
|
187 |
-
# max_new_tokens=2048,
|
188 |
-
# top_p=0.001,
|
189 |
-
# top_k=1,
|
190 |
-
# temperature=0.01,
|
191 |
-
# repetition_penalty=1.0,
|
192 |
-
# )
|
193 |
-
|
194 |
-
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
195 |
-
# thread.start()
|
196 |
-
# generated_text = ''
|
197 |
-
|
198 |
-
# try:
|
199 |
-
# for new_text in streamer:
|
200 |
-
# generated_text += new_text
|
201 |
-
# yield generated_text
|
202 |
-
# except Exception as e:
|
203 |
-
# print(f"Error: {e}")
|
204 |
-
# yield f"Error occurred: {str(e)}"
|
205 |
-
|
206 |
-
# examples = [
|
207 |
-
# [{"text": "Hint: Please answer the question and provide the final answer at the end. Question: Which number do you have to write in the last daisy?", "files": ["5.jpg"]}]
|
208 |
-
# ]
|
209 |
-
|
210 |
-
# demo = gr.ChatInterface(
|
211 |
-
# fn=model_inference,
|
212 |
-
# description="# **🦖 Fancy-MLLM/R1-OneVision-7B**",
|
213 |
-
# examples=examples,
|
214 |
-
# textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
215 |
-
# stop_btn="Stop Generation",
|
216 |
-
# multimodal=True,
|
217 |
-
# cache_examples=False,
|
218 |
-
# )
|
219 |
-
|
220 |
-
# demo.launch(debug=True)
|
221 |
-
|
222 |
-
|
223 |
import os
|
224 |
from datetime import datetime
|
|
|
225 |
import time
|
226 |
-
from threading import Thread
|
227 |
|
228 |
# Third-party imports
|
229 |
import numpy as np
|
230 |
import torch
|
231 |
from PIL import Image
|
|
|
232 |
import gradio as gr
|
233 |
import spaces
|
234 |
from transformers import (
|
235 |
Qwen2_5_VLForConditionalGeneration,
|
236 |
-
|
237 |
-
|
238 |
)
|
239 |
|
240 |
# Local imports
|
@@ -250,6 +29,7 @@ else:
|
|
250 |
|
251 |
print(f"[INFO] Using device: {device}")
|
252 |
|
|
|
253 |
def array_to_image_path(image_array):
|
254 |
if image_array is None:
|
255 |
raise ValueError("No image provided. Please upload an image before submitting.")
|
@@ -267,19 +47,19 @@ def array_to_image_path(image_array):
|
|
267 |
full_path = os.path.abspath(filename)
|
268 |
|
269 |
return full_path
|
270 |
-
|
271 |
models = {
|
272 |
-
"Fancy-MLLM/R1-
|
273 |
trust_remote_code=True,
|
274 |
torch_dtype="auto",
|
275 |
device_map="auto").eval(),
|
276 |
}
|
277 |
|
278 |
processors = {
|
279 |
-
"Fancy-MLLM/R1-
|
280 |
}
|
281 |
|
282 |
-
DESCRIPTION = "[🦖 Fancy-MLLM/R1-
|
283 |
|
284 |
kwargs = {}
|
285 |
kwargs['torch_dtype'] = torch.bfloat16
|
@@ -289,70 +69,55 @@ assistant_prompt = '<|assistant|>\n'
|
|
289 |
prompt_suffix = "<|end|>\n"
|
290 |
|
291 |
@spaces.GPU
|
292 |
-
def
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
# Load images if provided
|
297 |
-
images = []
|
298 |
-
if len(files) > 0:
|
299 |
-
images = [array_to_image_path(image) for image in files]
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
return
|
305 |
-
if text == "" and images:
|
306 |
-
yield "Error: Please input a text query along with the image(s)."
|
307 |
-
return
|
308 |
|
309 |
-
|
310 |
messages = [
|
311 |
-
|
312 |
"role": "user",
|
313 |
"content": [
|
314 |
-
|
315 |
-
|
|
|
|
|
|
|
316 |
],
|
317 |
}
|
318 |
]
|
319 |
|
320 |
-
#
|
321 |
-
|
|
|
|
|
322 |
image_inputs, video_inputs = process_vision_info(messages)
|
323 |
-
inputs =
|
324 |
-
text=[
|
325 |
images=image_inputs,
|
326 |
videos=video_inputs,
|
327 |
padding=True,
|
328 |
return_tensors="pt",
|
329 |
-
)
|
330 |
-
|
331 |
-
# Set up streamer for real-time output
|
332 |
-
streamer = TextIteratorStreamer(processors["Fancy-MLLM/R1-OneVision-7B"], skip_prompt=True, skip_special_tokens=True)
|
333 |
|
334 |
-
#
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
temperature=0.01,
|
342 |
-
repetition_penalty=1.0,
|
343 |
)
|
344 |
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
# Stream the output
|
350 |
-
buffer = ""
|
351 |
-
yield "Thinking..."
|
352 |
-
for new_text in streamer:
|
353 |
-
buffer += new_text
|
354 |
-
time.sleep(0.01)
|
355 |
-
yield buffer
|
356 |
|
357 |
css = """
|
358 |
#output {
|
@@ -364,21 +129,20 @@ css = """
|
|
364 |
|
365 |
with gr.Blocks(css=css) as demo:
|
366 |
gr.Markdown(DESCRIPTION)
|
367 |
-
with gr.Tab(label="R1-
|
368 |
with gr.Row():
|
369 |
with gr.Column():
|
370 |
-
input_img = gr.Image(label="Input Picture"
|
371 |
model_selector = gr.Dropdown(choices=list(models.keys()),
|
372 |
label="Model",
|
373 |
-
value="Fancy-MLLM/R1-
|
374 |
text_input = gr.Textbox(label="Text Prompt")
|
375 |
submit_btn = gr.Button(value="Submit")
|
376 |
with gr.Column():
|
377 |
-
output_text = gr.Textbox(label="Output Text"
|
|
|
378 |
|
379 |
-
submit_btn.click(
|
380 |
|
381 |
demo.queue(api_open=False)
|
382 |
demo.launch(debug=True)
|
383 |
-
|
384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
from datetime import datetime
|
3 |
+
import subprocess
|
4 |
import time
|
|
|
5 |
|
6 |
# Third-party imports
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
from PIL import Image
|
10 |
+
import accelerate
|
11 |
import gradio as gr
|
12 |
import spaces
|
13 |
from transformers import (
|
14 |
Qwen2_5_VLForConditionalGeneration,
|
15 |
+
AutoTokenizer,
|
16 |
+
AutoProcessor
|
17 |
)
|
18 |
|
19 |
# Local imports
|
|
|
29 |
|
30 |
print(f"[INFO] Using device: {device}")
|
31 |
|
32 |
+
|
33 |
def array_to_image_path(image_array):
|
34 |
if image_array is None:
|
35 |
raise ValueError("No image provided. Please upload an image before submitting.")
|
|
|
47 |
full_path = os.path.abspath(filename)
|
48 |
|
49 |
return full_path
|
50 |
+
|
51 |
models = {
|
52 |
+
"Fancy-MLLM/R1-Onevision-7B": Qwen2_5_VLForConditionalGeneration.from_pretrained("Fancy-MLLM/R1-Onevision-7B",
|
53 |
trust_remote_code=True,
|
54 |
torch_dtype="auto",
|
55 |
device_map="auto").eval(),
|
56 |
}
|
57 |
|
58 |
processors = {
|
59 |
+
"Fancy-MLLM/R1-Onevision-7B": AutoProcessor.from_pretrained("Fancy-MLLM/R1-Onevision-7B", trust_remote_code=True),
|
60 |
}
|
61 |
|
62 |
+
DESCRIPTION = "[🦖 Fancy-MLLM/R1-Onevision-7B Demo]"
|
63 |
|
64 |
kwargs = {}
|
65 |
kwargs['torch_dtype'] = torch.bfloat16
|
|
|
69 |
prompt_suffix = "<|end|>\n"
|
70 |
|
71 |
@spaces.GPU
|
72 |
+
def run_example(image, text_input=None, model_id=None):
|
73 |
+
start_time = time.time()
|
74 |
+
image_path = array_to_image_path(image)
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
print(image_path)
|
77 |
+
model = models[model_id]
|
78 |
+
processor = processors[model_id]
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
image = Image.fromarray(image).convert("RGB")
|
81 |
messages = [
|
82 |
+
{
|
83 |
"role": "user",
|
84 |
"content": [
|
85 |
+
{
|
86 |
+
"type": "image",
|
87 |
+
"image": image_path,
|
88 |
+
},
|
89 |
+
{"type": "text", "text": text_input},
|
90 |
],
|
91 |
}
|
92 |
]
|
93 |
|
94 |
+
# Preparation for inference
|
95 |
+
text = processor.apply_chat_template(
|
96 |
+
messages, tokenize=False, add_generation_prompt=True
|
97 |
+
)
|
98 |
image_inputs, video_inputs = process_vision_info(messages)
|
99 |
+
inputs = processor(
|
100 |
+
text=[text],
|
101 |
images=image_inputs,
|
102 |
videos=video_inputs,
|
103 |
padding=True,
|
104 |
return_tensors="pt",
|
105 |
+
)
|
106 |
+
inputs = inputs.to(device)
|
|
|
|
|
107 |
|
108 |
+
# Inference: Generation of the output
|
109 |
+
generated_ids = model.generate(**inputs, max_new_tokens=2048)
|
110 |
+
generated_ids_trimmed = [
|
111 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
112 |
+
]
|
113 |
+
output_text = processor.batch_decode(
|
114 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
|
|
|
|
115 |
)
|
116 |
|
117 |
+
end_time = time.time()
|
118 |
+
total_time = round(end_time - start_time, 2)
|
119 |
+
|
120 |
+
return output_text[0], total_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
css = """
|
123 |
#output {
|
|
|
129 |
|
130 |
with gr.Blocks(css=css) as demo:
|
131 |
gr.Markdown(DESCRIPTION)
|
132 |
+
with gr.Tab(label="R1-Onevision-7B Input"):
|
133 |
with gr.Row():
|
134 |
with gr.Column():
|
135 |
+
input_img = gr.Image(label="Input Picture")
|
136 |
model_selector = gr.Dropdown(choices=list(models.keys()),
|
137 |
label="Model",
|
138 |
+
value="Fancy-MLLM/R1-Onevision-7B")
|
139 |
text_input = gr.Textbox(label="Text Prompt")
|
140 |
submit_btn = gr.Button(value="Submit")
|
141 |
with gr.Column():
|
142 |
+
output_text = gr.Textbox(label="Output Text")
|
143 |
+
time_taken = gr.Textbox(label="Time taken for processing + inference")
|
144 |
|
145 |
+
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text, time_taken])
|
146 |
|
147 |
demo.queue(api_open=False)
|
148 |
demo.launch(debug=True)
|
|
|
|