File size: 12,472 Bytes
e6af450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0

from copy import deepcopy
from typing import List, Dict, Tuple, Optional, Union, Any
import matplotlib.pyplot as plt

from PIL import Image
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.attention.flex_attention import create_block_mask
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel

from data.data_utils import pil_img2rgb
from modeling.bagel.qwen2_navit import NaiveCache



VLM_THINK_SYSTEM_PROMPT = '''You should first think about the reasoning process in the mind and then provide the user with the answer. 
The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here'''

GEN_THINK_SYSTEM_PROMPT = '''You should first think about the planning process in the mind and then generate the image. 
The planning process is enclosed within <think> </think> tags, i.e. <think> planning process here </think> image here'''


class InterleaveInferencer:
    def __init__(self, model, vae_model, tokenizer, vae_transform, vit_transform, new_token_ids):
        self.model = model
        self.vae_model = vae_model
        self.tokenizer = tokenizer
        self.vae_transform = vae_transform
        self.vit_transform = vit_transform
        self.new_token_ids = new_token_ids
        
    def init_gen_context(self): 
        gen_context = {
            'kv_lens': [0],
            'ropes': [0],
            'past_key_values': NaiveCache(self.model.config.llm_config.num_hidden_layers),
        }
        return gen_context

    @torch.no_grad()
    def update_context_text(self, text, gen_context):
        # used for interleave data, currently only support 1 data inference, 

        past_key_values = gen_context['past_key_values']
        kv_lens = gen_context['kv_lens']
        ropes = gen_context['ropes']
        generation_input, kv_lens, ropes = self.model.prepare_prompts(
            curr_kvlens=kv_lens,
            curr_rope=ropes, 
            prompts=[text],
            tokenizer=self.tokenizer, 
            new_token_ids=self.new_token_ids,
        )

        past_key_values = self.model.forward_cache_update_text(past_key_values, **generation_input)        
        gen_context['kv_lens'] = kv_lens
        gen_context['ropes'] = ropes
        gen_context['past_key_values'] = past_key_values
        
        return gen_context

    @torch.no_grad()
    def update_context_image(self, image, gen_context, vae=True, vit=True):
        # used for interleave data, currently only support 1 data inference, 

        assert vae or vit
        past_key_values = gen_context['past_key_values']
        kv_lens = gen_context['kv_lens']
        ropes =  gen_context['ropes']

        if vae:
            ## update vae
            generation_input, kv_lens, ropes = self.model.prepare_vae_images(
                curr_kvlens=kv_lens,
                curr_rope=ropes, 
                images=[image],
                transforms=self.vae_transform, 
                new_token_ids=self.new_token_ids,
            )
            past_key_values = self.model.forward_cache_update_vae(self.vae_model, past_key_values, **generation_input)
        
        if vit:
            ## update vit
            generation_input, kv_lens, ropes = self.model.prepare_vit_images(
                curr_kvlens=kv_lens,
                curr_rope=ropes, 
                images=[image],
                transforms=self.vit_transform, 
                new_token_ids=self.new_token_ids,
            )
            past_key_values = self.model.forward_cache_update_vit(past_key_values, **generation_input)

        gen_context['kv_lens'] = kv_lens
        gen_context['ropes'] = ropes
        gen_context['past_key_values'] = past_key_values
        
        return gen_context

    @torch.no_grad()
    def gen_image(
        self, 
        image_shape, 
        gen_context, 
        cfg_text_scale=4.0,
        cfg_img_scale=1.5,

        cfg_text_precontext=None, 
        cfg_img_precontext=None, 
        cfg_interval=(0.4, 1.0),
        cfg_renorm_min=0.0,
        cfg_renorm_type="global",
        
        num_timesteps=50, 
        timestep_shift=3.0
    ):
        # print(cfg_renorm_type)
        past_key_values = gen_context['past_key_values']
        kv_lens = gen_context['kv_lens']
        ropes = gen_context['ropes']
        generation_input = self.model.prepare_vae_latent(
            curr_kvlens=kv_lens,
            curr_rope=ropes, 
            image_sizes=[image_shape], 
            new_token_ids=self.new_token_ids,
        ) 
        
        # text cfg
        cfg_text_past_key_values = cfg_text_precontext['past_key_values']
        kv_lens_cfg = cfg_text_precontext['kv_lens']
        ropes_cfg = cfg_text_precontext['ropes']
        generation_input_cfg_text = self.model.prepare_vae_latent_cfg(
            curr_kvlens=kv_lens_cfg,
            curr_rope=ropes_cfg, 
            image_sizes=[image_shape], 
        )

        # img cfg
        cfg_img_past_key_values = cfg_img_precontext['past_key_values']
        kv_lens_cfg = cfg_img_precontext['kv_lens']
        ropes_cfg = cfg_img_precontext['ropes']
        generation_input_cfg_img = self.model.prepare_vae_latent_cfg(
            curr_kvlens=kv_lens_cfg,
            curr_rope=ropes_cfg, 
            image_sizes=[image_shape], 
        )

        unpacked_latent = self.model.generate_image(
            past_key_values=past_key_values,
            cfg_text_past_key_values=cfg_text_past_key_values,
            cfg_img_past_key_values=cfg_img_past_key_values,
            num_timesteps=num_timesteps,
            cfg_text_scale=cfg_text_scale,
            cfg_img_scale=cfg_img_scale,
            cfg_interval=cfg_interval,
            cfg_renorm_min=cfg_renorm_min,
            cfg_renorm_type=cfg_renorm_type,
            timestep_shift=timestep_shift,
            **generation_input,
            cfg_text_packed_position_ids=generation_input_cfg_text['cfg_packed_position_ids'],
            cfg_text_packed_query_indexes=generation_input_cfg_text['cfg_packed_query_indexes'],
            cfg_text_key_values_lens=generation_input_cfg_text['cfg_key_values_lens'],
            cfg_text_packed_key_value_indexes=generation_input_cfg_text['cfg_packed_key_value_indexes'],
            cfg_img_packed_position_ids=generation_input_cfg_img['cfg_packed_position_ids'],
            cfg_img_packed_query_indexes=generation_input_cfg_img['cfg_packed_query_indexes'],
            cfg_img_key_values_lens=generation_input_cfg_img['cfg_key_values_lens'],
            cfg_img_packed_key_value_indexes=generation_input_cfg_img['cfg_packed_key_value_indexes'],
        )

        image = self.decode_image(unpacked_latent[0], image_shape)
        return image

        
    def decode_image(self, latent, image_shape):
        H, W = image_shape
        h, w = H // self.model.latent_downsample, W // self.model.latent_downsample

        latent = latent.reshape(1, h, w, self.model.latent_patch_size, self.model.latent_patch_size, self.model.latent_channel)
        latent = torch.einsum("nhwpqc->nchpwq", latent)
        latent = latent.reshape(1, self.model.latent_channel, h * self.model.latent_patch_size, w * self.model.latent_patch_size)
        image = self.vae_model.decode(latent)
        image = (image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255
        image = Image.fromarray((image).to(torch.uint8).cpu().numpy())

        return image

    @torch.no_grad()
    def gen_text(self, gen_context, max_length: int = 500, do_sample: bool = True, temperature: float = 1.0):
        gen_context = deepcopy(gen_context)
        past_key_values = gen_context['past_key_values']
        kv_lens = gen_context['kv_lens']
        ropes = gen_context['ropes']

        generation_input = self.model.prepare_start_tokens(kv_lens, ropes, self.new_token_ids)
        unpacked_latent = self.model.generate_text(
            past_key_values=past_key_values,
            max_length=max_length,
            do_sample=do_sample,
            temperature=temperature,
            end_token_id=self.new_token_ids['eos_token_id'],
            **generation_input,
        )
        output = self.tokenizer.decode(unpacked_latent[:,0])
        output = output.split('<|im_end|>')[0].split('<|im_start|>')[1]
        return output
        
    @torch.no_grad()
    def interleave_inference(
        self,
        input_lists: List[Union[str, Image.Image]],
        think=False,
        understanding_output=False,

        max_think_token_n=1000,
        do_sample=False,
        text_temperature=0.3,
        cfg_text_scale=3.0,
        cfg_img_scale=1.5,
        cfg_interval=[0.4, 1.0],
        timestep_shift=3.0,
        num_timesteps=50,
        cfg_renorm_min=0.0,
        cfg_renorm_type="global",
        image_shapes=(1024, 1024),
    ) -> List[Union[str, Image.Image]]:

        output_list = []
        gen_context = self.init_gen_context()
        cfg_text_context = deepcopy(gen_context)
        cfg_img_context = deepcopy(gen_context)

        with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
            if think:
                if understanding_output:
                    system_prompt = VLM_THINK_SYSTEM_PROMPT 
                else:
                    system_prompt = GEN_THINK_SYSTEM_PROMPT
                gen_context = self.update_context_text(system_prompt, gen_context)
                cfg_img_context = self.update_context_text(system_prompt, cfg_img_context)

            for input_term in input_lists:
                if isinstance(input_term, str):
                    cfg_text_context = deepcopy(gen_context)
                    gen_context = self.update_context_text(input_term, gen_context)
                    cfg_img_context = self.update_context_text(input_term, cfg_img_context)

                elif isinstance(input_term, Image.Image):
                    input_term = self.vae_transform.resize_transform(pil_img2rgb(input_term))
                    gen_context = self.update_context_image(input_term, gen_context, vae=not understanding_output)

                    image_shapes = input_term.size[::-1]
                    cfg_text_context = deepcopy(gen_context)

                else:
                    raise ValueError(f"Unsupported input type: {type(input_term)}")

            if understanding_output:
                gen_text = self.gen_text(gen_context, do_sample=do_sample, temperature=text_temperature, max_length=max_think_token_n)
                output_list.append(gen_text)

            else:
                if think:
                    gen_text = self.gen_text(gen_context, do_sample=do_sample, temperature=text_temperature, max_length=max_think_token_n)
                    gen_context = self.update_context_text(gen_text, gen_context)
                    output_list.append(gen_text)

                img = self.gen_image(
                    image_shapes, 
                    gen_context, 
                    cfg_text_precontext=cfg_text_context, 
                    cfg_img_precontext=cfg_img_context,

                    cfg_text_scale=cfg_text_scale, 
                    cfg_img_scale=cfg_img_scale, 
                    cfg_interval=cfg_interval, 
                    timestep_shift=timestep_shift, 
                    num_timesteps=num_timesteps,
                    cfg_renorm_min=cfg_renorm_min,
                    cfg_renorm_type=cfg_renorm_type,
                )

                output_list.append(img)

        return output_list
    
    def __call__(
        self, 
        image: Optional[Image.Image] = None, 
        text: Optional[str] = None, 
        **kargs
    ) -> Dict[str, Any]:
        output_dict = {'image': None, 'text': None}

        if image is None and text is None:
            print('Please provide at least one input: either an image or text.')
            return output_dict

        input_list = []
        if image is not None:
            input_list.append(image)
        if text is not None:
            input_list.append(text)

        output_list = self.interleave_inference(input_list, **kargs)

        for i in output_list:
            if isinstance(i, Image.Image):
                output_dict['image'] = i
            elif isinstance(i, str):
                output_dict['text'] = i
        return output_dict