Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,534 Bytes
e6af450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import random
import json
import numpy as np
import torch
from .data_utils import (
get_flattened_position_ids_interpolate,
get_flattened_position_ids_extrapolate,
len2weight,
patchify,
prepare_attention_mask_per_sample,
)
from .dataset_info import DATASET_INFO, DATASET_REGISTRY
from .transforms import ImageTransform
from .video_utils import FrameSampler
class DataConfig:
def __init__(
self,
grouped_datasets,
text_cond_dropout_prob=0.1,
vit_cond_dropout_prob=0.4,
vae_cond_dropout_prob=0.1,
vae_image_downsample=16,
max_latent_size=32,
vit_patch_size=14,
max_num_patch_per_side=70,
):
self.grouped_datasets = grouped_datasets
self.text_cond_dropout_prob = text_cond_dropout_prob
self.vit_cond_dropout_prob = vit_cond_dropout_prob
self.vit_patch_size = vit_patch_size
self.max_num_patch_per_side = max_num_patch_per_side
self.vae_cond_dropout_prob = vae_cond_dropout_prob
self.vae_image_downsample = vae_image_downsample
self.max_latent_size = max_latent_size
class PackedDataset(torch.utils.data.IterableDataset):
def __init__(
self,
data_config,
tokenizer,
special_tokens,
local_rank,
world_size,
num_workers,
expected_num_tokens=32768,
max_num_tokens_per_sample=16384,
max_num_tokens=36864,
prefer_buffer_before=16384,
max_buffer_size=50,
interpolate_pos=False,
use_flex=False,
data_status=None,
):
super().__init__()
self.expected_num_tokens = expected_num_tokens
self.max_num_tokens_per_sample = max_num_tokens_per_sample
self.prefer_buffer_before = prefer_buffer_before
self.max_num_tokens = max_num_tokens
self.max_buffer_size = max_buffer_size
self.tokenizer = tokenizer
self.local_rank = local_rank
self.world_size = world_size
self.num_workers = num_workers
self.use_flex = use_flex
for k, v in special_tokens.items():
setattr(self, k, v)
grouped_datasets, is_mandatory, grouped_weights = self.build_datasets(
data_config.grouped_datasets, data_status
)
self.grouped_datasets = grouped_datasets
self.dataset_iters = [iter(dataset) for dataset in grouped_datasets]
self.is_mandatory = is_mandatory
self.grouped_weights = grouped_weights
self.data_config = data_config
self.interpolate_pos = interpolate_pos
if self.interpolate_pos:
self.get_flattened_position_ids = get_flattened_position_ids_interpolate
else:
self.get_flattened_position_ids = get_flattened_position_ids_extrapolate
def build_datasets(self, datasets_metainfo, data_status):
datasets = []
is_mandatory = []
grouped_weights = []
for grouped_dataset_name, dataset_args in datasets_metainfo.items():
is_mandatory.append(dataset_args.pop('is_mandatory', False))
grouped_weights.append(dataset_args.pop('weight', 0.0))
if 'frame_sampler_args' in dataset_args.keys():
frame_sampler = FrameSampler(**dataset_args.pop('frame_sampler_args'))
dataset_args['frame_sampler'] = frame_sampler
if 'image_transform_args' in dataset_args.keys():
transform = ImageTransform(**dataset_args.pop('image_transform_args'))
dataset_args['transform'] = transform
if 'vit_image_transform_args' in dataset_args.keys():
vit_transform = ImageTransform(**dataset_args.pop('vit_image_transform_args'))
dataset_args['vit_transform'] = vit_transform
assert 'dataset_names' in dataset_args.keys()
dataset_names = dataset_args.pop('dataset_names')
dataset_args['data_dir_list'] = []
for item in dataset_names:
if self.local_rank == 0:
print(f'Preparing Dataset {grouped_dataset_name}/{item}')
meta_info = DATASET_INFO[grouped_dataset_name][item]
dataset_args['data_dir_list'].append(meta_info['data_dir'])
if "parquet_info_path" in meta_info.keys():
if 'parquet_info' not in dataset_args.keys():
dataset_args['parquet_info'] = {}
with open(meta_info['parquet_info_path'], 'r') as f:
parquet_info = json.load(f)
dataset_args['parquet_info'].update(parquet_info)
if 'json_dir' in meta_info.keys():
# parquet/tar with json
if 'json_dir_list' not in dataset_args.keys():
dataset_args['json_dir_list'] = [meta_info['json_dir']]
else:
dataset_args['json_dir_list'].append(meta_info['json_dir'])
if 'jsonl_path' in meta_info.keys():
# jsonl with jpeg
if 'jsonl_path_list' not in dataset_args.keys():
dataset_args['jsonl_path_list'] = [meta_info['jsonl_path']]
else:
dataset_args['jsonl_path_list'].append(meta_info['jsonl_path'])
resume_data_status = dataset_args.pop('resume_data_status', True)
if data_status is not None and grouped_dataset_name in data_status.keys() and resume_data_status:
data_status_per_group = data_status[grouped_dataset_name]
else:
data_status_per_group = None
dataset = DATASET_REGISTRY[grouped_dataset_name](
dataset_name=grouped_dataset_name,
tokenizer=self.tokenizer,
local_rank=self.local_rank,
world_size=self.world_size,
num_workers=self.num_workers,
data_status=data_status_per_group,
**dataset_args
)
datasets.append(dataset)
return datasets, is_mandatory, grouped_weights
def set_epoch(self, seed):
for dataset in self.grouped_datasets:
dataset.set_epoch(seed)
def set_sequence_status(self):
sequence_status = dict(
curr = 0,
sample_lens = list(),
packed_position_ids = list(),
nested_attention_masks = list(),
split_lens = list(),
attn_modes = list(),
packed_text_ids = list(),
packed_text_indexes = list(),
packed_label_ids = list(),
ce_loss_indexes = list(),
ce_loss_weights = list(),
vae_image_tensors = list(),
packed_latent_position_ids = list(),
vae_latent_shapes = list(),
packed_vae_token_indexes = list(),
packed_timesteps = list(),
mse_loss_indexes = list(),
packed_vit_tokens = list(),
vit_token_seqlens = list(),
packed_vit_position_ids = list(),
packed_vit_token_indexes = list(),
)
return sequence_status
def to_tensor(self, sequence_status):
data = dict(
sequence_length=sum(sequence_status['sample_lens']),
sample_lens=sequence_status['sample_lens'],
packed_text_ids=torch.tensor(sequence_status['packed_text_ids']),
packed_text_indexes=torch.tensor(sequence_status['packed_text_indexes']),
packed_position_ids=torch.tensor(sequence_status['packed_position_ids']),
)
if not self.use_flex:
data['nested_attention_masks'] = sequence_status['nested_attention_masks']
else:
sequence_len = data['sequence_length']
pad_len = self.max_num_tokens - sequence_len
data['split_lens'] = sequence_status['split_lens'] + [pad_len]
data['attn_modes'] = sequence_status['attn_modes'] + ['causal']
data['sample_lens'] += [pad_len]
# if the model has a convnet vae (e.g., as visual tokenizer)
if len(sequence_status['vae_image_tensors']) > 0:
image_tensors = sequence_status.pop('vae_image_tensors')
image_sizes = [item.shape for item in image_tensors]
max_image_size = [max(item) for item in list(zip(*image_sizes))]
padded_images = torch.zeros(size=(len(image_tensors), *max_image_size))
for i, image_tensor in enumerate(image_tensors):
padded_images[i, :, :image_tensor.shape[1], :image_tensor.shape[2]] = image_tensor
data['padded_images'] = padded_images
data['patchified_vae_latent_shapes'] = sequence_status['vae_latent_shapes']
data['packed_latent_position_ids'] = torch.cat(sequence_status['packed_latent_position_ids'], dim=0)
data['packed_vae_token_indexes'] = torch.tensor(sequence_status['packed_vae_token_indexes'])
# if the model has a vit (e.g., as visual tokenizer)
if len(sequence_status['packed_vit_tokens']) > 0:
data['packed_vit_tokens'] = torch.cat(sequence_status['packed_vit_tokens'], dim=0)
data['packed_vit_position_ids'] = torch.cat(sequence_status['packed_vit_position_ids'], dim=0)
data['packed_vit_token_indexes'] = torch.tensor(sequence_status['packed_vit_token_indexes'])
data['vit_token_seqlens'] = torch.tensor(sequence_status['vit_token_seqlens'])
# if the model is required to perform visual generation
if len(sequence_status['packed_timesteps']) > 0:
data['packed_timesteps'] = torch.tensor(sequence_status['packed_timesteps'])
data['mse_loss_indexes'] = torch.tensor(sequence_status['mse_loss_indexes'])
# if the model is required to perform text generation
if len(sequence_status['packed_label_ids']) > 0:
data['packed_label_ids'] = torch.tensor(sequence_status['packed_label_ids'])
data['ce_loss_indexes'] = torch.tensor(sequence_status['ce_loss_indexes'])
data['ce_loss_weights'] = torch.tensor(sequence_status['ce_loss_weights'])
return data
def __iter__(self):
total_weights = sum(self.grouped_weights)
assert total_weights > 0.0
group_cumprobs = [sum(self.grouped_weights[:i + 1]) / total_weights
for i in range(len(self.grouped_weights))]
sequence_status = self.set_sequence_status()
batch_data_indexes = []
buffer = []
while True:
# Ensure at least one sample from each group
if sequence_status['curr'] == 0:
for group_index, group_iter in enumerate(self.dataset_iters):
if self.is_mandatory[group_index]:
while True:
sample = next(group_iter)
# if a sample is too long, skip it
num_tokens = sample['num_tokens'] + 2 * len(sample['sequence_plan'])
if num_tokens < self.max_num_tokens_per_sample:
sequence_status = self.pack_sequence(sample, sequence_status)
batch_data_indexes.append(sample['data_indexes'])
break
else:
print(f"skip a sample with length {num_tokens}")
continue
if sequence_status['curr'] < self.prefer_buffer_before and len(buffer) > 0:
sample = buffer.pop(0)
sample_from_buffer = True
else:
# sample normally across all groups
n = random.random()
group_index = 0
for i, cumprob in enumerate(group_cumprobs):
if n < cumprob:
group_index = i
break
sample = next(self.dataset_iters[group_index])
sample_from_buffer = False
# if a sample is too long, skip it
num_tokens = sample['num_tokens'] + 2 * len(sample['sequence_plan'])
if num_tokens > self.max_num_tokens_per_sample:
print(f"skip a sample with length {num_tokens}")
continue
if sequence_status['curr'] + num_tokens > self.max_num_tokens:
if len(buffer) < self.max_buffer_size and not sample_from_buffer:
buffer.append(sample)
else:
print(f"Yielding data with length {sum(sequence_status['sample_lens'])}")
data = self.to_tensor(sequence_status)
data['batch_data_indexes'] = batch_data_indexes
yield data
sequence_status = self.set_sequence_status()
batch_data_indexes = []
continue
sequence_status = self.pack_sequence(sample, sequence_status)
batch_data_indexes.append(sample['data_indexes'])
if sequence_status['curr'] >= self.expected_num_tokens:
data = self.to_tensor(sequence_status)
data['batch_data_indexes'] = batch_data_indexes
yield data
sequence_status = self.set_sequence_status()
batch_data_indexes = []
def pack_sequence(self, sample, sequence_status):
image_tensor_list = sample['image_tensor_list']
text_ids_list = sample['text_ids_list']
sequence_plan = sample['sequence_plan']
split_lens, attn_modes = list(), list()
curr = sequence_status['curr']
curr_rope_id = 0
sample_lens = 0
for item in sequence_plan:
split_start = item.get('split_start', True)
if split_start:
curr_split_len = 0
if item['type'] == 'text':
text_ids = text_ids_list.pop(0)
if item['enable_cfg'] == 1 and random.random() < self.data_config.text_cond_dropout_prob:
continue
shifted_text_ids = [self.bos_token_id] + text_ids
sequence_status['packed_text_ids'].extend(shifted_text_ids)
sequence_status['packed_text_indexes'].extend(range(curr, curr + len(shifted_text_ids)))
if item['loss'] == 1:
sequence_status['ce_loss_indexes'].extend(range(curr, curr + len(shifted_text_ids)))
sequence_status['ce_loss_weights'].extend(
[len2weight(len(shifted_text_ids))] * len(shifted_text_ids)
)
sequence_status['packed_label_ids'].extend(text_ids + [self.eos_token_id])
curr += len(shifted_text_ids)
curr_split_len += len(shifted_text_ids)
# add a <|im_end|> token
sequence_status['packed_text_ids'].append(self.eos_token_id)
sequence_status['packed_text_indexes'].append(curr)
if item['special_token_loss'] == 1: # <|im_end|> may have loss
sequence_status['ce_loss_indexes'].append(curr)
sequence_status['ce_loss_weights'].append(1.0)
sequence_status['packed_label_ids'].append(item['special_token_label'])
curr += 1
curr_split_len += 1
# update sequence status
attn_modes.append("causal")
sequence_status['packed_position_ids'].extend(range(curr_rope_id, curr_rope_id + curr_split_len))
curr_rope_id += curr_split_len
elif item['type'] == 'vit_image':
image_tensor = image_tensor_list.pop(0)
if item['enable_cfg'] == 1 and random.random() < self.data_config.vit_cond_dropout_prob:
curr_rope_id += 1
continue
# add a <|startofimage|> token
sequence_status['packed_text_ids'].append(self.start_of_image)
sequence_status['packed_text_indexes'].append(curr)
curr += 1
curr_split_len += 1
# preprocess image
vit_tokens = patchify(image_tensor, self.data_config.vit_patch_size)
num_img_tokens = vit_tokens.shape[0]
sequence_status['packed_vit_token_indexes'].extend(range(curr, curr + num_img_tokens))
curr += num_img_tokens
curr_split_len += num_img_tokens
sequence_status['packed_vit_tokens'].append(vit_tokens)
sequence_status['vit_token_seqlens'].append(num_img_tokens)
sequence_status['packed_vit_position_ids'].append(
self.get_flattened_position_ids(
image_tensor.size(1), image_tensor.size(2),
self.data_config.vit_patch_size,
max_num_patches_per_side=self.data_config.max_num_patch_per_side
)
)
# add a <|endofimage|> token
sequence_status['packed_text_ids'].append(self.end_of_image)
sequence_status['packed_text_indexes'].append(curr)
if item['special_token_loss'] == 1: # <|endofimage|> may have loss
sequence_status['ce_loss_indexes'].append(curr)
sequence_status['ce_loss_weights'].append(1.0)
sequence_status['packed_label_ids'].append(item['special_token_label'])
curr += 1
curr_split_len += 1
# update sequence status
attn_modes.append("full")
sequence_status['packed_position_ids'].extend([curr_rope_id] * curr_split_len)
curr_rope_id += 1
elif item['type'] == 'vae_image':
image_tensor = image_tensor_list.pop(0)
if item['enable_cfg'] == 1 and random.random() < self.data_config.vae_cond_dropout_prob:
# FIXME fix vae dropout in video2video setting.
curr_rope_id += 1
continue
# add a <|startofimage|> token
sequence_status['packed_text_ids'].append(self.start_of_image)
sequence_status['packed_text_indexes'].append(curr)
curr += 1
curr_split_len += 1
# preprocess image
sequence_status['vae_image_tensors'].append(image_tensor)
sequence_status['packed_latent_position_ids'].append(
self.get_flattened_position_ids(
image_tensor.size(1), image_tensor.size(2),
self.data_config.vae_image_downsample,
max_num_patches_per_side=self.data_config.max_latent_size
)
)
H, W = image_tensor.shape[1:]
h = H // self.data_config.vae_image_downsample
w = W // self.data_config.vae_image_downsample
sequence_status['vae_latent_shapes'].append((h, w))
num_img_tokens = w * h
sequence_status['packed_vae_token_indexes'].extend(range(curr, curr + num_img_tokens))
if item['loss'] == 1:
sequence_status['mse_loss_indexes'].extend(range(curr, curr + num_img_tokens))
if split_start:
timestep = np.random.randn()
else:
timestep = float('-inf')
sequence_status['packed_timesteps'].extend([timestep] * num_img_tokens)
curr += num_img_tokens
curr_split_len += num_img_tokens
# add a <|endofimage|> token
sequence_status['packed_text_ids'].append(self.end_of_image)
sequence_status['packed_text_indexes'].append(curr)
# <|endofimage|> may have loss
if item['special_token_loss'] == 1:
sequence_status['ce_loss_indexes'].append(curr)
sequence_status['ce_loss_weights'].append(1.0)
sequence_status['packed_label_ids'].append(item['special_token_label'])
curr += 1
curr_split_len += 1
# update sequence status
if split_start:
if item['loss'] == 1 and 'frame_delta' not in item.keys():
attn_modes.append("noise")
else:
attn_modes.append("full")
sequence_status['packed_position_ids'].extend([curr_rope_id] * (num_img_tokens + 2))
if 'frame_delta' in item.keys():
curr_rope_id += item['frame_delta']
elif item['loss'] == 0:
curr_rope_id += 1
if item.get('split_end', True):
split_lens.append(curr_split_len)
sample_lens += curr_split_len
sequence_status['curr'] = curr
sequence_status['sample_lens'].append(sample_lens)
# prepare attention mask
if not self.use_flex:
sequence_status['nested_attention_masks'].append(
prepare_attention_mask_per_sample(split_lens, attn_modes)
)
else:
sequence_status['split_lens'].extend(split_lens)
sequence_status['attn_modes'].extend(attn_modes)
return sequence_status
class SimpleCustomBatch:
def __init__(self, batch):
data = batch[0]
self.batch_data_indexes = data['batch_data_indexes']
self.sequence_length = data["sequence_length"]
self.sample_lens = data["sample_lens"]
self.packed_text_ids = data["packed_text_ids"]
self.packed_text_indexes = data["packed_text_indexes"]
self.packed_position_ids = data["packed_position_ids"]
self.use_flex = "nested_attention_masks" not in data.keys()
if self.use_flex:
self.split_lens = data["split_lens"]
self.attn_modes = data["attn_modes"]
else:
self.nested_attention_masks = data["nested_attention_masks"]
if "padded_images" in data.keys():
self.padded_images = data["padded_images"]
self.patchified_vae_latent_shapes = data["patchified_vae_latent_shapes"]
self.packed_latent_position_ids = data["packed_latent_position_ids"]
self.packed_vae_token_indexes = data["packed_vae_token_indexes"]
if "packed_vit_tokens" in data.keys():
self.packed_vit_tokens = data["packed_vit_tokens"]
self.packed_vit_position_ids = data["packed_vit_position_ids"]
self.packed_vit_token_indexes = data["packed_vit_token_indexes"]
self.vit_token_seqlens = data["vit_token_seqlens"]
if "packed_timesteps" in data.keys():
self.packed_timesteps = data["packed_timesteps"]
self.mse_loss_indexes = data["mse_loss_indexes"]
if "packed_label_ids" in data.keys():
self.packed_label_ids = data["packed_label_ids"]
self.ce_loss_indexes = data["ce_loss_indexes"]
self.ce_loss_weights = data["ce_loss_weights"]
def pin_memory(self):
self.packed_text_ids = self.packed_text_ids.pin_memory()
self.packed_text_indexes = self.packed_text_indexes.pin_memory()
self.packed_position_ids = self.packed_position_ids.pin_memory()
if not self.use_flex:
self.nested_attention_masks = [item.pin_memory() for item in self.nested_attention_masks]
if hasattr(self, 'padded_images'):
self.padded_images = self.padded_images.pin_memory()
self.packed_vae_token_indexes = self.packed_vae_token_indexes.pin_memory()
self.packed_latent_position_ids = self.packed_latent_position_ids.pin_memory()
if hasattr(self, 'packed_timesteps'):
self.packed_timesteps = self.packed_timesteps.pin_memory()
self.mse_loss_indexes = self.mse_loss_indexes.pin_memory()
if hasattr(self, 'packed_vit_tokens'):
self.packed_vit_tokens = self.packed_vit_tokens.pin_memory()
self.packed_vit_position_ids = self.packed_vit_position_ids.pin_memory()
self.packed_vit_token_indexes = self.packed_vit_token_indexes.pin_memory()
self.vit_token_seqlens = self.vit_token_seqlens.pin_memory()
if hasattr(self, 'packed_label_ids'):
self.packed_label_ids = self.packed_label_ids.pin_memory()
self.ce_loss_indexes = self.ce_loss_indexes.pin_memory()
self.ce_loss_weights = self.ce_loss_weights.pin_memory()
return self
def cuda(self, device):
self.packed_text_ids = self.packed_text_ids.to(device)
self.packed_text_indexes = self.packed_text_indexes.to(device)
self.packed_position_ids = self.packed_position_ids.to(device)
if not self.use_flex:
self.nested_attention_masks = [item.to(device) for item in self.nested_attention_masks]
if hasattr(self, 'padded_images'):
self.padded_images = self.padded_images.to(device)
self.packed_vae_token_indexes = self.packed_vae_token_indexes.to(device)
self.packed_latent_position_ids = self.packed_latent_position_ids.to(device)
if hasattr(self, 'packed_timesteps'):
self.packed_timesteps = self.packed_timesteps.to(device)
self.mse_loss_indexes = self.mse_loss_indexes.to(device)
if hasattr(self, 'packed_vit_tokens'):
self.packed_vit_tokens = self.packed_vit_tokens.to(device)
self.packed_vit_position_ids = self.packed_vit_position_ids.to(device)
self.packed_vit_token_indexes = self.packed_vit_token_indexes.to(device)
self.vit_token_seqlens = self.vit_token_seqlens.to(device)
if hasattr(self, 'packed_label_ids'):
self.packed_label_ids = self.packed_label_ids.to(device)
self.ce_loss_indexes = self.ce_loss_indexes.to(device)
self.ce_loss_weights = self.ce_loss_weights.to(device)
return self
def to_dict(self):
data = dict(
sequence_length = self.sequence_length,
sample_lens = self.sample_lens,
packed_text_ids = self.packed_text_ids,
packed_text_indexes = self.packed_text_indexes,
packed_position_ids = self.packed_position_ids,
batch_data_indexes = self.batch_data_indexes,
)
if not self.use_flex:
data['nested_attention_masks'] = self.nested_attention_masks
else:
data['split_lens'] = self.split_lens
data['attn_modes'] = self.attn_modes
if hasattr(self, 'padded_images'):
data['padded_images'] = self.padded_images
data['patchified_vae_latent_shapes'] = self.patchified_vae_latent_shapes
data['packed_latent_position_ids'] = self.packed_latent_position_ids
data['packed_vae_token_indexes'] = self.packed_vae_token_indexes
if hasattr(self, 'packed_vit_tokens'):
data['packed_vit_tokens'] = self.packed_vit_tokens
data['packed_vit_position_ids'] = self.packed_vit_position_ids
data['packed_vit_token_indexes'] = self.packed_vit_token_indexes
data['vit_token_seqlens'] = self.vit_token_seqlens
if hasattr(self, 'packed_timesteps'):
data['packed_timesteps'] = self.packed_timesteps
data['mse_loss_indexes'] = self.mse_loss_indexes
if hasattr(self, 'packed_label_ids'):
data['packed_label_ids'] = self.packed_label_ids
data['ce_loss_indexes'] = self.ce_loss_indexes
data['ce_loss_weights'] = self.ce_loss_weights
return data
def collate_wrapper():
def collate_fn(batch):
return SimpleCustomBatch(batch)
return collate_fn
|