File size: 28,534 Bytes
e6af450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0


import random
import json

import numpy as np
import torch

from .data_utils import (
    get_flattened_position_ids_interpolate,
    get_flattened_position_ids_extrapolate, 
    len2weight,
    patchify, 
    prepare_attention_mask_per_sample, 
)
from .dataset_info import DATASET_INFO, DATASET_REGISTRY
from .transforms import ImageTransform
from .video_utils import FrameSampler


class DataConfig:
    def __init__(
        self, 
        grouped_datasets, 
        text_cond_dropout_prob=0.1,
        vit_cond_dropout_prob=0.4,
        vae_cond_dropout_prob=0.1,
        vae_image_downsample=16,
        max_latent_size=32,
        vit_patch_size=14,
        max_num_patch_per_side=70,
    ):
        self.grouped_datasets = grouped_datasets
        self.text_cond_dropout_prob = text_cond_dropout_prob
        self.vit_cond_dropout_prob = vit_cond_dropout_prob
        self.vit_patch_size = vit_patch_size
        self.max_num_patch_per_side = max_num_patch_per_side
        self.vae_cond_dropout_prob = vae_cond_dropout_prob
        self.vae_image_downsample = vae_image_downsample
        self.max_latent_size = max_latent_size


class PackedDataset(torch.utils.data.IterableDataset):
    def __init__(
        self, 
        data_config, 
        tokenizer, 
        special_tokens,
        local_rank, 
        world_size, 
        num_workers,
        expected_num_tokens=32768, 
        max_num_tokens_per_sample=16384,
        max_num_tokens=36864,
        prefer_buffer_before=16384,
        max_buffer_size=50,
        interpolate_pos=False,
        use_flex=False,
        data_status=None,
    ):
        super().__init__()
        self.expected_num_tokens = expected_num_tokens
        self.max_num_tokens_per_sample = max_num_tokens_per_sample
        self.prefer_buffer_before = prefer_buffer_before
        self.max_num_tokens = max_num_tokens
        self.max_buffer_size = max_buffer_size
        self.tokenizer = tokenizer
        self.local_rank = local_rank
        self.world_size = world_size
        self.num_workers = num_workers
        self.use_flex = use_flex
        for k, v in special_tokens.items():
            setattr(self, k, v)

        grouped_datasets, is_mandatory, grouped_weights = self.build_datasets(
            data_config.grouped_datasets, data_status
        )
        self.grouped_datasets = grouped_datasets
        self.dataset_iters = [iter(dataset) for dataset in grouped_datasets]
        self.is_mandatory = is_mandatory
        self.grouped_weights = grouped_weights
        self.data_config = data_config
        self.interpolate_pos = interpolate_pos
        if self.interpolate_pos:
            self.get_flattened_position_ids = get_flattened_position_ids_interpolate
        else:
            self.get_flattened_position_ids = get_flattened_position_ids_extrapolate

    def build_datasets(self, datasets_metainfo, data_status):
        datasets = []
        is_mandatory = []
        grouped_weights = []
        for grouped_dataset_name, dataset_args in datasets_metainfo.items():
            is_mandatory.append(dataset_args.pop('is_mandatory', False))
            grouped_weights.append(dataset_args.pop('weight', 0.0))

            if 'frame_sampler_args' in dataset_args.keys():
                frame_sampler = FrameSampler(**dataset_args.pop('frame_sampler_args'))
                dataset_args['frame_sampler'] = frame_sampler
            if 'image_transform_args' in dataset_args.keys():
                transform = ImageTransform(**dataset_args.pop('image_transform_args'))
                dataset_args['transform'] = transform
            if 'vit_image_transform_args' in dataset_args.keys():
                vit_transform = ImageTransform(**dataset_args.pop('vit_image_transform_args'))
                dataset_args['vit_transform'] = vit_transform

            assert 'dataset_names' in dataset_args.keys()
            dataset_names = dataset_args.pop('dataset_names')
            dataset_args['data_dir_list'] = []
            for item in dataset_names:
                if self.local_rank == 0:
                    print(f'Preparing Dataset {grouped_dataset_name}/{item}')
                meta_info = DATASET_INFO[grouped_dataset_name][item]
                dataset_args['data_dir_list'].append(meta_info['data_dir'])

                if "parquet_info_path" in meta_info.keys():
                    if 'parquet_info' not in dataset_args.keys():
                        dataset_args['parquet_info'] = {}
                    with open(meta_info['parquet_info_path'], 'r') as f:
                        parquet_info = json.load(f)
                    dataset_args['parquet_info'].update(parquet_info)

                if 'json_dir' in meta_info.keys():
                    # parquet/tar with json
                    if 'json_dir_list' not in dataset_args.keys():
                        dataset_args['json_dir_list'] = [meta_info['json_dir']]
                    else:
                        dataset_args['json_dir_list'].append(meta_info['json_dir'])

                if 'jsonl_path' in meta_info.keys():
                    # jsonl with jpeg
                    if 'jsonl_path_list' not in dataset_args.keys():
                        dataset_args['jsonl_path_list'] = [meta_info['jsonl_path']]
                    else:
                        dataset_args['jsonl_path_list'].append(meta_info['jsonl_path'])

            resume_data_status = dataset_args.pop('resume_data_status', True)
            if data_status is not None and grouped_dataset_name in data_status.keys() and resume_data_status:
                data_status_per_group = data_status[grouped_dataset_name]
            else:
                data_status_per_group = None
            dataset = DATASET_REGISTRY[grouped_dataset_name](
                dataset_name=grouped_dataset_name,
                tokenizer=self.tokenizer,
                local_rank=self.local_rank,
                world_size=self.world_size,
                num_workers=self.num_workers,
                data_status=data_status_per_group,
                **dataset_args
            )
            datasets.append(dataset)

        return datasets, is_mandatory, grouped_weights

    def set_epoch(self, seed):
        for dataset in self.grouped_datasets:
            dataset.set_epoch(seed)

    def set_sequence_status(self):
        sequence_status = dict(
            curr                        = 0,
            sample_lens                 = list(),
            packed_position_ids         = list(),
            nested_attention_masks      = list(),
            split_lens                  = list(),
            attn_modes                  = list(),
            packed_text_ids             = list(), 
            packed_text_indexes         = list(),
            packed_label_ids            = list(),
            ce_loss_indexes             = list(),
            ce_loss_weights             = list(),
            vae_image_tensors           = list(), 
            packed_latent_position_ids  = list(),
            vae_latent_shapes           = list(), 
            packed_vae_token_indexes    = list(), 
            packed_timesteps            = list(), 
            mse_loss_indexes            = list(),
            packed_vit_tokens           = list(), 
            vit_token_seqlens           = list(),
            packed_vit_position_ids     = list(),
            packed_vit_token_indexes    = list(), 
        )
        return sequence_status

    def to_tensor(self, sequence_status):
        data = dict(
            sequence_length=sum(sequence_status['sample_lens']),
            sample_lens=sequence_status['sample_lens'],
            packed_text_ids=torch.tensor(sequence_status['packed_text_ids']),
            packed_text_indexes=torch.tensor(sequence_status['packed_text_indexes']),
            packed_position_ids=torch.tensor(sequence_status['packed_position_ids']),
        )
        if not self.use_flex:
            data['nested_attention_masks'] = sequence_status['nested_attention_masks']
        else:
            sequence_len = data['sequence_length']
            pad_len = self.max_num_tokens - sequence_len
            data['split_lens'] = sequence_status['split_lens'] + [pad_len]
            data['attn_modes'] = sequence_status['attn_modes'] + ['causal']
            data['sample_lens'] += [pad_len]

        # if the model has a convnet vae (e.g., as visual tokenizer)
        if len(sequence_status['vae_image_tensors']) > 0:
            image_tensors = sequence_status.pop('vae_image_tensors')
            image_sizes = [item.shape for item in image_tensors]
            max_image_size = [max(item) for item in list(zip(*image_sizes))]
            padded_images = torch.zeros(size=(len(image_tensors), *max_image_size))
            for i, image_tensor in enumerate(image_tensors):
                padded_images[i, :, :image_tensor.shape[1], :image_tensor.shape[2]] = image_tensor

            data['padded_images'] = padded_images
            data['patchified_vae_latent_shapes'] = sequence_status['vae_latent_shapes']
            data['packed_latent_position_ids'] = torch.cat(sequence_status['packed_latent_position_ids'], dim=0)
            data['packed_vae_token_indexes'] = torch.tensor(sequence_status['packed_vae_token_indexes'])

        # if the model has a vit (e.g., as visual tokenizer)
        if len(sequence_status['packed_vit_tokens']) > 0:
            data['packed_vit_tokens'] = torch.cat(sequence_status['packed_vit_tokens'], dim=0)
            data['packed_vit_position_ids'] = torch.cat(sequence_status['packed_vit_position_ids'], dim=0)
            data['packed_vit_token_indexes'] = torch.tensor(sequence_status['packed_vit_token_indexes'])
            data['vit_token_seqlens'] = torch.tensor(sequence_status['vit_token_seqlens'])

        # if the model is required to perform visual generation
        if len(sequence_status['packed_timesteps']) > 0:
            data['packed_timesteps'] = torch.tensor(sequence_status['packed_timesteps'])
            data['mse_loss_indexes'] = torch.tensor(sequence_status['mse_loss_indexes'])

        # if the model is required to perform text generation
        if len(sequence_status['packed_label_ids']) > 0:
            data['packed_label_ids'] = torch.tensor(sequence_status['packed_label_ids'])
            data['ce_loss_indexes'] = torch.tensor(sequence_status['ce_loss_indexes'])
            data['ce_loss_weights'] = torch.tensor(sequence_status['ce_loss_weights'])

        return data

    def __iter__(self):
        total_weights = sum(self.grouped_weights)
        assert total_weights > 0.0
        group_cumprobs = [sum(self.grouped_weights[:i + 1]) / total_weights 
                          for i in range(len(self.grouped_weights))]
        sequence_status = self.set_sequence_status()
        batch_data_indexes = []

        buffer = []
        while True:
            # Ensure at least one sample from each group
            if sequence_status['curr'] == 0:
                for group_index, group_iter in enumerate(self.dataset_iters):
                    if self.is_mandatory[group_index]:
                        while True:
                            sample = next(group_iter)
                            # if a sample is too long, skip it
                            num_tokens = sample['num_tokens'] + 2 * len(sample['sequence_plan'])
                            if num_tokens < self.max_num_tokens_per_sample:
                                sequence_status = self.pack_sequence(sample, sequence_status)
                                batch_data_indexes.append(sample['data_indexes'])
                                break
                            else:
                                print(f"skip a sample with length {num_tokens}")
                                continue

            if sequence_status['curr'] < self.prefer_buffer_before and len(buffer) > 0:
                sample = buffer.pop(0)
                sample_from_buffer = True
            else:
                # sample normally across all groups
                n = random.random()
                group_index = 0
                for i, cumprob in enumerate(group_cumprobs):
                    if n < cumprob:
                        group_index = i
                        break
                sample = next(self.dataset_iters[group_index])
                sample_from_buffer = False

            # if a sample is too long, skip it
            num_tokens = sample['num_tokens'] + 2 * len(sample['sequence_plan'])
            if num_tokens > self.max_num_tokens_per_sample:
                print(f"skip a sample with length {num_tokens}")
                continue

            if sequence_status['curr'] + num_tokens > self.max_num_tokens:
                if len(buffer) < self.max_buffer_size and not sample_from_buffer:
                    buffer.append(sample)
                else:
                    print(f"Yielding data with length {sum(sequence_status['sample_lens'])}")
                    data = self.to_tensor(sequence_status)
                    data['batch_data_indexes'] = batch_data_indexes
                    yield data
                    sequence_status = self.set_sequence_status()
                    batch_data_indexes = []
                continue

            sequence_status = self.pack_sequence(sample, sequence_status)
            batch_data_indexes.append(sample['data_indexes'])

            if sequence_status['curr'] >= self.expected_num_tokens:
                data = self.to_tensor(sequence_status)
                data['batch_data_indexes'] = batch_data_indexes
                yield data
                sequence_status = self.set_sequence_status()
                batch_data_indexes = []

    def pack_sequence(self, sample, sequence_status):
        image_tensor_list = sample['image_tensor_list']
        text_ids_list = sample['text_ids_list']
        sequence_plan = sample['sequence_plan']

        split_lens, attn_modes = list(), list()
        curr = sequence_status['curr']
        curr_rope_id = 0
        sample_lens = 0

        for item in sequence_plan:
            split_start = item.get('split_start', True)
            if split_start:
                curr_split_len = 0

            if item['type'] == 'text':
                text_ids = text_ids_list.pop(0)
                if item['enable_cfg'] == 1 and random.random() < self.data_config.text_cond_dropout_prob:
                    continue

                shifted_text_ids = [self.bos_token_id] + text_ids
                sequence_status['packed_text_ids'].extend(shifted_text_ids)
                sequence_status['packed_text_indexes'].extend(range(curr, curr + len(shifted_text_ids)))
                if item['loss'] == 1:
                    sequence_status['ce_loss_indexes'].extend(range(curr, curr + len(shifted_text_ids)))
                    sequence_status['ce_loss_weights'].extend(
                        [len2weight(len(shifted_text_ids))] * len(shifted_text_ids)
                    )
                    sequence_status['packed_label_ids'].extend(text_ids + [self.eos_token_id])
                curr += len(shifted_text_ids)
                curr_split_len += len(shifted_text_ids)

                # add a <|im_end|> token
                sequence_status['packed_text_ids'].append(self.eos_token_id)
                sequence_status['packed_text_indexes'].append(curr)
                if item['special_token_loss'] == 1: # <|im_end|> may have loss
                    sequence_status['ce_loss_indexes'].append(curr)
                    sequence_status['ce_loss_weights'].append(1.0)
                    sequence_status['packed_label_ids'].append(item['special_token_label'])
                curr += 1
                curr_split_len += 1

                # update sequence status
                attn_modes.append("causal")
                sequence_status['packed_position_ids'].extend(range(curr_rope_id, curr_rope_id + curr_split_len))
                curr_rope_id += curr_split_len

            elif item['type'] == 'vit_image':
                image_tensor = image_tensor_list.pop(0)
                if item['enable_cfg'] == 1 and random.random() < self.data_config.vit_cond_dropout_prob:
                    curr_rope_id += 1
                    continue

                # add a <|startofimage|> token
                sequence_status['packed_text_ids'].append(self.start_of_image)
                sequence_status['packed_text_indexes'].append(curr)
                curr += 1
                curr_split_len += 1

                # preprocess image
                vit_tokens = patchify(image_tensor, self.data_config.vit_patch_size)
                num_img_tokens = vit_tokens.shape[0]
                sequence_status['packed_vit_token_indexes'].extend(range(curr, curr + num_img_tokens))
                curr += num_img_tokens
                curr_split_len += num_img_tokens

                sequence_status['packed_vit_tokens'].append(vit_tokens)
                sequence_status['vit_token_seqlens'].append(num_img_tokens)
                sequence_status['packed_vit_position_ids'].append(
                    self.get_flattened_position_ids(
                        image_tensor.size(1), image_tensor.size(2),
                        self.data_config.vit_patch_size, 
                        max_num_patches_per_side=self.data_config.max_num_patch_per_side
                    )
                )

                # add a <|endofimage|> token
                sequence_status['packed_text_ids'].append(self.end_of_image)
                sequence_status['packed_text_indexes'].append(curr)
                if item['special_token_loss'] == 1: # <|endofimage|> may have loss
                    sequence_status['ce_loss_indexes'].append(curr)
                    sequence_status['ce_loss_weights'].append(1.0)
                    sequence_status['packed_label_ids'].append(item['special_token_label'])
                curr += 1
                curr_split_len += 1

                # update sequence status
                attn_modes.append("full")
                sequence_status['packed_position_ids'].extend([curr_rope_id] * curr_split_len)
                curr_rope_id += 1

            elif item['type'] == 'vae_image':
                image_tensor = image_tensor_list.pop(0)
                if item['enable_cfg'] == 1 and random.random() < self.data_config.vae_cond_dropout_prob:
                    # FIXME fix vae dropout in video2video setting.
                    curr_rope_id += 1
                    continue

                # add a <|startofimage|> token
                sequence_status['packed_text_ids'].append(self.start_of_image)
                sequence_status['packed_text_indexes'].append(curr)
                curr += 1
                curr_split_len += 1

                # preprocess image
                sequence_status['vae_image_tensors'].append(image_tensor)
                sequence_status['packed_latent_position_ids'].append(
                    self.get_flattened_position_ids(
                        image_tensor.size(1), image_tensor.size(2),
                        self.data_config.vae_image_downsample, 
                        max_num_patches_per_side=self.data_config.max_latent_size
                    )
                )
                H, W = image_tensor.shape[1:]
                h = H // self.data_config.vae_image_downsample
                w = W // self.data_config.vae_image_downsample
                sequence_status['vae_latent_shapes'].append((h, w))

                num_img_tokens = w * h
                sequence_status['packed_vae_token_indexes'].extend(range(curr, curr + num_img_tokens))
                if item['loss'] == 1:
                    sequence_status['mse_loss_indexes'].extend(range(curr, curr + num_img_tokens))
                    if split_start:
                        timestep = np.random.randn()
                else:
                    timestep = float('-inf')

                sequence_status['packed_timesteps'].extend([timestep] * num_img_tokens)
                curr += num_img_tokens
                curr_split_len += num_img_tokens

                # add a <|endofimage|> token
                sequence_status['packed_text_ids'].append(self.end_of_image)
                sequence_status['packed_text_indexes'].append(curr)
                # <|endofimage|> may have loss
                if item['special_token_loss'] == 1:
                    sequence_status['ce_loss_indexes'].append(curr)
                    sequence_status['ce_loss_weights'].append(1.0)
                    sequence_status['packed_label_ids'].append(item['special_token_label'])
                curr += 1
                curr_split_len += 1

                # update sequence status
                if split_start:
                    if item['loss'] == 1 and 'frame_delta' not in item.keys():
                        attn_modes.append("noise")
                    else:
                        attn_modes.append("full")
                sequence_status['packed_position_ids'].extend([curr_rope_id] * (num_img_tokens + 2))
                if 'frame_delta' in item.keys():
                    curr_rope_id += item['frame_delta']
                elif item['loss'] == 0:
                    curr_rope_id += 1

            if item.get('split_end', True):
                split_lens.append(curr_split_len)
                sample_lens += curr_split_len

        sequence_status['curr'] = curr
        sequence_status['sample_lens'].append(sample_lens)
        # prepare attention mask
        if not self.use_flex:
            sequence_status['nested_attention_masks'].append(
                prepare_attention_mask_per_sample(split_lens, attn_modes)
            )
        else:
            sequence_status['split_lens'].extend(split_lens)
            sequence_status['attn_modes'].extend(attn_modes)

        return sequence_status


class SimpleCustomBatch:
    def __init__(self, batch):
        data = batch[0]
        self.batch_data_indexes = data['batch_data_indexes']
        self.sequence_length = data["sequence_length"]
        self.sample_lens = data["sample_lens"]
        self.packed_text_ids = data["packed_text_ids"]
        self.packed_text_indexes = data["packed_text_indexes"]
        self.packed_position_ids = data["packed_position_ids"]

        self.use_flex = "nested_attention_masks" not in data.keys()

        if self.use_flex:
            self.split_lens = data["split_lens"]
            self.attn_modes = data["attn_modes"]
        else:
            self.nested_attention_masks = data["nested_attention_masks"]

        if "padded_images" in data.keys():
            self.padded_images = data["padded_images"]
            self.patchified_vae_latent_shapes = data["patchified_vae_latent_shapes"]
            self.packed_latent_position_ids = data["packed_latent_position_ids"]
            self.packed_vae_token_indexes = data["packed_vae_token_indexes"]

        if "packed_vit_tokens" in data.keys():
            self.packed_vit_tokens = data["packed_vit_tokens"]
            self.packed_vit_position_ids = data["packed_vit_position_ids"]
            self.packed_vit_token_indexes = data["packed_vit_token_indexes"]
            self.vit_token_seqlens = data["vit_token_seqlens"]

        if "packed_timesteps" in data.keys():
            self.packed_timesteps = data["packed_timesteps"]
            self.mse_loss_indexes = data["mse_loss_indexes"]

        if "packed_label_ids" in data.keys():
            self.packed_label_ids = data["packed_label_ids"]
            self.ce_loss_indexes = data["ce_loss_indexes"]
            self.ce_loss_weights = data["ce_loss_weights"]

    def pin_memory(self):
        self.packed_text_ids = self.packed_text_ids.pin_memory()
        self.packed_text_indexes = self.packed_text_indexes.pin_memory()
        self.packed_position_ids = self.packed_position_ids.pin_memory()

        if not self.use_flex:
            self.nested_attention_masks = [item.pin_memory() for item in self.nested_attention_masks]

        if hasattr(self, 'padded_images'):
            self.padded_images = self.padded_images.pin_memory()
            self.packed_vae_token_indexes = self.packed_vae_token_indexes.pin_memory()
            self.packed_latent_position_ids = self.packed_latent_position_ids.pin_memory()

        if hasattr(self, 'packed_timesteps'):
            self.packed_timesteps = self.packed_timesteps.pin_memory()
            self.mse_loss_indexes = self.mse_loss_indexes.pin_memory()

        if hasattr(self, 'packed_vit_tokens'):
            self.packed_vit_tokens = self.packed_vit_tokens.pin_memory()
            self.packed_vit_position_ids = self.packed_vit_position_ids.pin_memory()
            self.packed_vit_token_indexes = self.packed_vit_token_indexes.pin_memory()
            self.vit_token_seqlens = self.vit_token_seqlens.pin_memory()

        if hasattr(self, 'packed_label_ids'):
            self.packed_label_ids = self.packed_label_ids.pin_memory()
            self.ce_loss_indexes = self.ce_loss_indexes.pin_memory()
            self.ce_loss_weights = self.ce_loss_weights.pin_memory()

        return self

    def cuda(self, device):
        self.packed_text_ids = self.packed_text_ids.to(device)
        self.packed_text_indexes = self.packed_text_indexes.to(device)
        self.packed_position_ids = self.packed_position_ids.to(device)

        if not self.use_flex:
            self.nested_attention_masks = [item.to(device) for item in self.nested_attention_masks]

        if hasattr(self, 'padded_images'):
            self.padded_images = self.padded_images.to(device)
            self.packed_vae_token_indexes = self.packed_vae_token_indexes.to(device)
            self.packed_latent_position_ids = self.packed_latent_position_ids.to(device)

        if hasattr(self, 'packed_timesteps'):
            self.packed_timesteps = self.packed_timesteps.to(device)
            self.mse_loss_indexes = self.mse_loss_indexes.to(device)

        if hasattr(self, 'packed_vit_tokens'):
            self.packed_vit_tokens = self.packed_vit_tokens.to(device)
            self.packed_vit_position_ids = self.packed_vit_position_ids.to(device)
            self.packed_vit_token_indexes = self.packed_vit_token_indexes.to(device)
            self.vit_token_seqlens = self.vit_token_seqlens.to(device)

        if hasattr(self, 'packed_label_ids'):
            self.packed_label_ids = self.packed_label_ids.to(device)
            self.ce_loss_indexes = self.ce_loss_indexes.to(device)
            self.ce_loss_weights = self.ce_loss_weights.to(device)

        return self

    def to_dict(self):
        data = dict(
            sequence_length = self.sequence_length,
            sample_lens = self.sample_lens,
            packed_text_ids = self.packed_text_ids,
            packed_text_indexes = self.packed_text_indexes,
            packed_position_ids = self.packed_position_ids,
            batch_data_indexes = self.batch_data_indexes,
        )

        if not self.use_flex:
            data['nested_attention_masks'] = self.nested_attention_masks
        else:
            data['split_lens'] = self.split_lens
            data['attn_modes'] = self.attn_modes

        if hasattr(self, 'padded_images'):
            data['padded_images'] = self.padded_images
            data['patchified_vae_latent_shapes'] = self.patchified_vae_latent_shapes
            data['packed_latent_position_ids'] = self.packed_latent_position_ids
            data['packed_vae_token_indexes'] = self.packed_vae_token_indexes

        if hasattr(self, 'packed_vit_tokens'):
            data['packed_vit_tokens'] = self.packed_vit_tokens
            data['packed_vit_position_ids'] = self.packed_vit_position_ids
            data['packed_vit_token_indexes'] = self.packed_vit_token_indexes
            data['vit_token_seqlens'] = self.vit_token_seqlens

        if hasattr(self, 'packed_timesteps'):
            data['packed_timesteps'] = self.packed_timesteps
            data['mse_loss_indexes'] = self.mse_loss_indexes

        if hasattr(self, 'packed_label_ids'):
            data['packed_label_ids'] = self.packed_label_ids
            data['ce_loss_indexes'] = self.ce_loss_indexes
            data['ce_loss_weights'] = self.ce_loss_weights

        return data


def collate_wrapper():
    def collate_fn(batch):
        return SimpleCustomBatch(batch)
    return collate_fn