Spaces:
Paused
Paused
File size: 15,337 Bytes
12a0dd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# Copyright (c) 2024 The HuggingFace Inc. team.
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
#
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
#
# Original file was released under Apache-2.0, with the full license text
# available at https://github.com/huggingface/transformers/blob/main/LICENSE.
#
# This modified file is released under the same license.
import torch
from torch import nn
from transformers.activations import ACT2FN
from modeling.siglip.configuration_siglip import SiglipVisionConfig as _SiglipVisionConfig
from modeling.siglip.modeling_siglip import SiglipAttention, SiglipPreTrainedModel
from flash_attn import flash_attn_varlen_func
class SiglipVisionConfig(_SiglipVisionConfig):
r"""
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
Example:
```python
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipVisionConfig()
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "siglip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=16,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
rope=True,
**kwargs,
):
super().__init__(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_channels=num_channels,
image_size=image_size,
patch_size=patch_size,
hidden_act=hidden_act,
layer_norm_eps=layer_norm_eps,
attention_dropout=attention_dropout,
**kwargs)
self.rope = rope
class RotaryEmbedding2D(torch.nn.Module):
def __init__(self, dim, max_h, max_w, base=10000):
super().__init__()
freq = torch.arange(0, dim, 2, dtype=torch.int64).float() / dim
inv_freq = 1.0 / (base ** freq)
grid_h = torch.arange(0, max_h)
grid_h = grid_h.to(inv_freq.dtype)
grid_h = grid_h[:, None].repeat(1, max_w)
grid_w = torch.arange(0, max_w)
grid_w = grid_w.to(inv_freq.dtype)
grid_w = grid_w[None, :].repeat(max_h, 1)
cos_h, sin_h = self._forward_one_side(grid_h, inv_freq)
cos_w, sin_w = self._forward_one_side(grid_w, inv_freq)
self.register_buffer("cos_h", cos_h)
self.register_buffer("sin_h", sin_h)
self.register_buffer("cos_w", cos_w)
self.register_buffer("sin_w", sin_w)
def _forward_one_side(self, grid, inv_freq):
freqs = grid[..., None] * inv_freq[None, None, :]
emb = torch.cat((freqs, freqs), dim=-1).flatten(0, 1)
return emb.cos(), emb.sin()
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin):
# unsqueeze due to the head dimension
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class SiglipVisionEmbeddings(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.num_patches_per_side = self.image_size // self.patch_size
self.num_patches = self.num_patches_per_side**2
self.num_positions = self.num_patches
if not config.rope:
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
def convert_conv2d_to_linear(self, config, meta=False):
if meta:
linear_patch_embedding = nn.Linear(
config.num_channels * self.patch_size ** 2, self.embed_dim, bias=True, device='meta'
)
else:
linear_patch_embedding = nn.Linear(
config.num_channels * self.patch_size ** 2, self.embed_dim, bias=True
)
W = self.patch_embedding.weight.permute(0, 2, 3, 1).reshape(
self.embed_dim, config.num_channels * self.patch_size ** 2
)
linear_patch_embedding.weight.data = W
linear_patch_embedding.bias.data = self.patch_embedding.bias.data
del self.patch_embedding
self.patch_embedding = linear_patch_embedding
def forward(
self,
packed_pixel_values: torch.FloatTensor,
packed_flattened_position_ids: torch.LongTensor
) -> torch.Tensor:
patch_embeds = self.patch_embedding(packed_pixel_values)
if not self.config.rope:
embeddings = patch_embeds + self.position_embedding(packed_flattened_position_ids)
else:
embeddings = patch_embeds
return embeddings
class SiglipFlashAttention2(SiglipAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.IntTensor,
max_seqlen: int,
cos_h: torch.Tensor = None,
sin_h: torch.Tensor = None,
cos_w: torch.Tensor = None,
sin_w: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
total_q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(total_q_len, self.num_heads, self.head_dim)
key_states = key_states.view(total_q_len, self.num_heads, self.head_dim)
value_states = value_states.view(total_q_len, self.num_heads, self.head_dim)
if self.config.rope:
qh, qw = query_states[:, :, :self.head_dim // 2], query_states[:, :, self.head_dim // 2:]
kh, kw = key_states[:, :, :self.head_dim // 2], key_states[:, :, self.head_dim // 2:]
qh, kh = apply_rotary_pos_emb(qh, kh, cos_h, sin_h)
qw, kw = apply_rotary_pos_emb(qw, kw, cos_w, sin_w)
query_states = torch.cat([qh, qw], dim=-1)
key_states = torch.cat([kh, kw], dim=-1)
attn_output = flash_attn_varlen_func(
query_states.to(torch.bfloat16),
key_states.to(torch.bfloat16),
value_states.to(torch.bfloat16),
cu_seqlens_q=cu_seqlens,
cu_seqlens_k=cu_seqlens,
max_seqlen_q=max_seqlen,
max_seqlen_k=max_seqlen,
causal=False,
)
attn_output = self.out_proj(attn_output.reshape(total_q_len, -1))
return attn_output
class SiglipMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class SiglipEncoderLayer(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = SiglipFlashAttention2(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.IntTensor,
max_seqlen: int,
cos_h: torch.Tensor = None,
sin_h: torch.Tensor = None,
cos_w: torch.Tensor = None,
sin_w: torch.Tensor = None
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.self_attn(
hidden_states=hidden_states,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
cos_h=cos_h,
sin_h=sin_h,
cos_w=cos_w,
sin_w=sin_w
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class SiglipEncoder(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]
)
def forward(
self,
inputs_embeds: torch.Tensor,
cu_seqlens: torch.IntTensor,
max_seqlen: int,
cos_h: torch.Tensor = None,
sin_h: torch.Tensor = None,
cos_w: torch.Tensor = None,
sin_w: torch.Tensor = None,
) -> torch.Tensor:
hidden_states = inputs_embeds
for encoder_layer in self.layers:
hidden_states = encoder_layer(hidden_states, cu_seqlens, max_seqlen,
cos_h=cos_h, sin_h=sin_h, cos_w=cos_w, sin_w=sin_w)
return hidden_states
class SiglipVisionTransformer(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipVisionEmbeddings(config)
if config.rope:
max_size = config.image_size // config.patch_size
dim_head = config.hidden_size // config.num_attention_heads
self.rope = RotaryEmbedding2D(dim_head // 2, max_size, max_size)
self.encoder = SiglipEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
def forward(
self,
packed_pixel_values: torch.Tensor,
packed_flattened_position_ids: torch.LongTensor,
cu_seqlens: torch.IntTensor,
max_seqlen: int,
) -> torch.Tensor:
hidden_states = self.embeddings(
packed_pixel_values=packed_pixel_values,
packed_flattened_position_ids=packed_flattened_position_ids
)
extra_inputs = {}
if self.config.rope:
extra_inputs.update(
cos_h = self.rope.cos_h[packed_flattened_position_ids],
sin_h = self.rope.sin_h[packed_flattened_position_ids],
cos_w = self.rope.cos_w[packed_flattened_position_ids],
sin_w = self.rope.sin_w[packed_flattened_position_ids]
)
last_hidden_state = self.encoder(
inputs_embeds=hidden_states, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen,
**extra_inputs
)
last_hidden_state = self.post_layernorm(last_hidden_state)
return last_hidden_state
class SiglipVisionModel(SiglipPreTrainedModel):
config_class = SiglipVisionConfig
main_input_name = "packed_pixel_values"
def __init__(self, config: SiglipVisionConfig):
super().__init__(config)
self.vision_model = SiglipVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
def forward(
self,
packed_pixel_values: torch.Tensor,
packed_flattened_position_ids: torch.LongTensor,
cu_seqlens: torch.IntTensor,
max_seqlen: int,
) -> torch.Tensor:
return self.vision_model(
packed_pixel_values=packed_pixel_values,
packed_flattened_position_ids=packed_flattened_position_ids,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
|