Spaces:
Running
on
Zero
Running
on
Zero
Update
Browse files- app.py +508 -505
- modeling/__init__.py +3 -3
- modeling/autoencoder.py +361 -361
- modeling/bagel/__init__.py +18 -18
- modeling/bagel/bagel.py +1026 -1026
- modeling/bagel/modeling_utils.py +143 -143
- modeling/bagel/qwen2_navit.py +0 -0
- modeling/bagel/siglip_navit.py +402 -402
- modeling/qwen2/__init__.py +68 -68
- modeling/qwen2/configuration_qwen2.py +179 -179
- modeling/qwen2/modeling_qwen2.py +929 -929
- modeling/qwen2/tokenization_qwen2.py +328 -328
- modeling/qwen2/tokenization_qwen2_fast.py +123 -123
- modeling/siglip/__init__.py +98 -98
- modeling/siglip/configuration_siglip.py +287 -287
- modeling/siglip/convert_siglip_to_hf.py +401 -401
- modeling/siglip/image_processing_siglip.py +230 -230
- modeling/siglip/modeling_siglip.py +0 -0
- modeling/siglip/processing_siglip.py +131 -131
- modeling/siglip/tokenization_siglip.py +364 -364
app.py
CHANGED
@@ -1,505 +1,508 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
from
|
15 |
-
from
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
from
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
if
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
image_shapes=
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
#
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
edit_btn.
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
],
|
417 |
-
outputs=[
|
418 |
-
)
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import random
|
7 |
+
import subprocess
|
8 |
+
subprocess.run(
|
9 |
+
"pip install flash-attn --no-build-isolation",
|
10 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
11 |
+
shell=True,
|
12 |
+
)
|
13 |
+
|
14 |
+
from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
from data.data_utils import add_special_tokens, pil_img2rgb
|
18 |
+
from data.transforms import ImageTransform
|
19 |
+
from inferencer import InterleaveInferencer
|
20 |
+
from modeling.autoencoder import load_ae
|
21 |
+
from modeling.bagel.qwen2_navit import NaiveCache
|
22 |
+
from modeling.bagel import (
|
23 |
+
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
|
24 |
+
SiglipVisionConfig, SiglipVisionModel
|
25 |
+
)
|
26 |
+
from modeling.qwen2 import Qwen2Tokenizer
|
27 |
+
|
28 |
+
from huggingface_hub import snapshot_download
|
29 |
+
|
30 |
+
save_dir = "./model"
|
31 |
+
repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
|
32 |
+
cache_dir = save_dir + "/cache"
|
33 |
+
|
34 |
+
snapshot_download(cache_dir=cache_dir,
|
35 |
+
local_dir=save_dir,
|
36 |
+
repo_id=repo_id,
|
37 |
+
local_dir_use_symlinks=False,
|
38 |
+
resume_download=True,
|
39 |
+
allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
|
40 |
+
)
|
41 |
+
|
42 |
+
# Model Initialization
|
43 |
+
model_path = "./model" #Download from https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT
|
44 |
+
|
45 |
+
llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
|
46 |
+
llm_config.qk_norm = True
|
47 |
+
llm_config.tie_word_embeddings = False
|
48 |
+
llm_config.layer_module = "Qwen2MoTDecoderLayer"
|
49 |
+
|
50 |
+
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
|
51 |
+
vit_config.rope = False
|
52 |
+
vit_config.num_hidden_layers -= 1
|
53 |
+
|
54 |
+
vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
|
55 |
+
|
56 |
+
config = BagelConfig(
|
57 |
+
visual_gen=True,
|
58 |
+
visual_und=True,
|
59 |
+
llm_config=llm_config,
|
60 |
+
vit_config=vit_config,
|
61 |
+
vae_config=vae_config,
|
62 |
+
vit_max_num_patch_per_side=70,
|
63 |
+
connector_act='gelu_pytorch_tanh',
|
64 |
+
latent_patch_size=2,
|
65 |
+
max_latent_size=64,
|
66 |
+
)
|
67 |
+
|
68 |
+
with init_empty_weights():
|
69 |
+
language_model = Qwen2ForCausalLM(llm_config)
|
70 |
+
vit_model = SiglipVisionModel(vit_config)
|
71 |
+
model = Bagel(language_model, vit_model, config)
|
72 |
+
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)
|
73 |
+
|
74 |
+
tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
|
75 |
+
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
|
76 |
+
|
77 |
+
vae_transform = ImageTransform(1024, 512, 16)
|
78 |
+
vit_transform = ImageTransform(980, 224, 14)
|
79 |
+
|
80 |
+
# Model Loading and Multi GPU Infernece Preparing
|
81 |
+
device_map = infer_auto_device_map(
|
82 |
+
model,
|
83 |
+
max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
|
84 |
+
no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
|
85 |
+
)
|
86 |
+
|
87 |
+
same_device_modules = [
|
88 |
+
'language_model.model.embed_tokens',
|
89 |
+
'time_embedder',
|
90 |
+
'latent_pos_embed',
|
91 |
+
'vae2llm',
|
92 |
+
'llm2vae',
|
93 |
+
'connector',
|
94 |
+
'vit_pos_embed'
|
95 |
+
]
|
96 |
+
|
97 |
+
if torch.cuda.device_count() == 1:
|
98 |
+
first_device = device_map.get(same_device_modules[0], "cuda:0")
|
99 |
+
for k in same_device_modules:
|
100 |
+
if k in device_map:
|
101 |
+
device_map[k] = first_device
|
102 |
+
else:
|
103 |
+
device_map[k] = "cuda:0"
|
104 |
+
else:
|
105 |
+
first_device = device_map.get(same_device_modules[0])
|
106 |
+
for k in same_device_modules:
|
107 |
+
if k in device_map:
|
108 |
+
device_map[k] = first_device
|
109 |
+
|
110 |
+
model = load_checkpoint_and_dispatch(
|
111 |
+
model,
|
112 |
+
checkpoint=os.path.join(model_path, "ema.safetensors"),
|
113 |
+
device_map=device_map,
|
114 |
+
offload_buffers=True,
|
115 |
+
dtype=torch.bfloat16,
|
116 |
+
force_hooks=True,
|
117 |
+
).eval()
|
118 |
+
|
119 |
+
|
120 |
+
# Inferencer Preparing
|
121 |
+
inferencer = InterleaveInferencer(
|
122 |
+
model=model,
|
123 |
+
vae_model=vae_model,
|
124 |
+
tokenizer=tokenizer,
|
125 |
+
vae_transform=vae_transform,
|
126 |
+
vit_transform=vit_transform,
|
127 |
+
new_token_ids=new_token_ids,
|
128 |
+
)
|
129 |
+
|
130 |
+
def set_seed(seed):
|
131 |
+
"""Set random seeds for reproducibility"""
|
132 |
+
if seed > 0:
|
133 |
+
random.seed(seed)
|
134 |
+
np.random.seed(seed)
|
135 |
+
torch.manual_seed(seed)
|
136 |
+
if torch.cuda.is_available():
|
137 |
+
torch.cuda.manual_seed(seed)
|
138 |
+
torch.cuda.manual_seed_all(seed)
|
139 |
+
torch.backends.cudnn.deterministic = True
|
140 |
+
torch.backends.cudnn.benchmark = False
|
141 |
+
return seed
|
142 |
+
|
143 |
+
# Text to Image function with thinking option and hyperparameters
|
144 |
+
@spaces.GPU(duration=90)
|
145 |
+
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4,
|
146 |
+
timestep_shift=3.0, num_timesteps=50,
|
147 |
+
cfg_renorm_min=1.0, cfg_renorm_type="global",
|
148 |
+
max_think_token_n=1024, do_sample=False, text_temperature=0.3,
|
149 |
+
seed=0, image_ratio="1:1"):
|
150 |
+
# Set seed for reproducibility
|
151 |
+
set_seed(seed)
|
152 |
+
|
153 |
+
if image_ratio == "1:1":
|
154 |
+
image_shapes = (1024, 1024)
|
155 |
+
elif image_ratio == "4:3":
|
156 |
+
image_shapes = (768, 1024)
|
157 |
+
elif image_ratio == "3:4":
|
158 |
+
image_shapes = (1024, 768)
|
159 |
+
elif image_ratio == "16:9":
|
160 |
+
image_shapes = (576, 1024)
|
161 |
+
elif image_ratio == "9:16":
|
162 |
+
image_shapes = (1024, 576)
|
163 |
+
|
164 |
+
# Set hyperparameters
|
165 |
+
inference_hyper = dict(
|
166 |
+
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
167 |
+
do_sample=do_sample if show_thinking else False,
|
168 |
+
text_temperature=text_temperature if show_thinking else 0.3,
|
169 |
+
cfg_text_scale=cfg_text_scale,
|
170 |
+
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
171 |
+
timestep_shift=timestep_shift,
|
172 |
+
num_timesteps=num_timesteps,
|
173 |
+
cfg_renorm_min=cfg_renorm_min,
|
174 |
+
cfg_renorm_type=cfg_renorm_type,
|
175 |
+
image_shapes=image_shapes,
|
176 |
+
)
|
177 |
+
|
178 |
+
result = {}
|
179 |
+
|
180 |
+
# Call inferencer with or without think parameter based on user choice
|
181 |
+
for i in inferencer(text=prompt, think=show_thinking, **inference_hyper):
|
182 |
+
if type(i) == str:
|
183 |
+
result["text"] += i
|
184 |
+
elif type(i) == Image.Image:
|
185 |
+
result["image"] = i
|
186 |
+
|
187 |
+
yield result["image"], result.get("text", None)
|
188 |
+
|
189 |
+
|
190 |
+
# Image Understanding function with thinking option and hyperparameters
|
191 |
+
@spaces.GPU(duration=90)
|
192 |
+
def image_understanding(image: Image.Image, prompt: str, show_thinking=False,
|
193 |
+
do_sample=False, text_temperature=0.3, max_new_tokens=512):
|
194 |
+
if image is None:
|
195 |
+
return "Please upload an image."
|
196 |
+
|
197 |
+
if isinstance(image, np.ndarray):
|
198 |
+
image = Image.fromarray(image)
|
199 |
+
|
200 |
+
image = pil_img2rgb(image)
|
201 |
+
|
202 |
+
# Set hyperparameters
|
203 |
+
inference_hyper = dict(
|
204 |
+
do_sample=do_sample,
|
205 |
+
text_temperature=text_temperature,
|
206 |
+
max_think_token_n=max_new_tokens, # Set max_length
|
207 |
+
)
|
208 |
+
|
209 |
+
result = {}
|
210 |
+
# Use show_thinking parameter to control thinking process
|
211 |
+
for i in inferencer(image=image, text=prompt, think=show_thinking,
|
212 |
+
understanding_output=True, **inference_hyper):
|
213 |
+
if type(i) == str:
|
214 |
+
result["text"] += i
|
215 |
+
elif type(i) == Image.Image:
|
216 |
+
result["image"] = i
|
217 |
+
yield result["text"]
|
218 |
+
|
219 |
+
|
220 |
+
# Image Editing function with thinking option and hyperparameters
|
221 |
+
@spaces.GPU(duration=90)
|
222 |
+
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0,
|
223 |
+
cfg_img_scale=2.0, cfg_interval=0.0,
|
224 |
+
timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0,
|
225 |
+
cfg_renorm_type="text_channel", max_think_token_n=1024,
|
226 |
+
do_sample=False, text_temperature=0.3, seed=0):
|
227 |
+
# Set seed for reproducibility
|
228 |
+
set_seed(seed)
|
229 |
+
|
230 |
+
if image is None:
|
231 |
+
return "Please upload an image.", ""
|
232 |
+
|
233 |
+
if isinstance(image, np.ndarray):
|
234 |
+
image = Image.fromarray(image)
|
235 |
+
|
236 |
+
image = pil_img2rgb(image)
|
237 |
+
|
238 |
+
# Set hyperparameters
|
239 |
+
inference_hyper = dict(
|
240 |
+
max_think_token_n=max_think_token_n if show_thinking else 1024,
|
241 |
+
do_sample=do_sample if show_thinking else False,
|
242 |
+
text_temperature=text_temperature if show_thinking else 0.3,
|
243 |
+
cfg_text_scale=cfg_text_scale,
|
244 |
+
cfg_img_scale=cfg_img_scale,
|
245 |
+
cfg_interval=[cfg_interval, 1.0], # End fixed at 1.0
|
246 |
+
timestep_shift=timestep_shift,
|
247 |
+
num_timesteps=num_timesteps,
|
248 |
+
cfg_renorm_min=cfg_renorm_min,
|
249 |
+
cfg_renorm_type=cfg_renorm_type,
|
250 |
+
)
|
251 |
+
|
252 |
+
# Include thinking parameter based on user choice
|
253 |
+
result = {}
|
254 |
+
for i in inferencer(image=image, text=prompt, think=show_thinking, **inference_hyper):
|
255 |
+
if type(i) == str:
|
256 |
+
result["text"] += i
|
257 |
+
elif type(i) == Image.Image:
|
258 |
+
result["image"] = i
|
259 |
+
|
260 |
+
yield result["image"], result.get("text", "")
|
261 |
+
|
262 |
+
# Helper function to load example images
|
263 |
+
def load_example_image(image_path):
|
264 |
+
try:
|
265 |
+
return Image.open(image_path)
|
266 |
+
except Exception as e:
|
267 |
+
print(f"Error loading example image: {e}")
|
268 |
+
return None
|
269 |
+
|
270 |
+
|
271 |
+
# Gradio UI
|
272 |
+
with gr.Blocks() as demo:
|
273 |
+
gr.Markdown("""
|
274 |
+
<div>
|
275 |
+
<img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
|
276 |
+
</div>
|
277 |
+
""")
|
278 |
+
|
279 |
+
with gr.Tab("📝 Text to Image"):
|
280 |
+
txt_input = gr.Textbox(
|
281 |
+
label="Prompt",
|
282 |
+
value="A female cosplayer portraying an ethereal fairy or elf, wearing a flowing dress made of delicate fabrics in soft, mystical colors like emerald green and silver. She has pointed ears, a gentle, enchanting expression, and her outfit is adorned with sparkling jewels and intricate patterns. The background is a magical forest with glowing plants, mystical creatures, and a serene atmosphere."
|
283 |
+
)
|
284 |
+
|
285 |
+
with gr.Row():
|
286 |
+
show_thinking = gr.Checkbox(label="Thinking", value=False)
|
287 |
+
|
288 |
+
# Add hyperparameter controls in an accordion
|
289 |
+
with gr.Accordion("Inference Hyperparameters", open=False):
|
290 |
+
# 参数一排两个布局
|
291 |
+
with gr.Group():
|
292 |
+
with gr.Row():
|
293 |
+
seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1,
|
294 |
+
label="Seed", info="0 for random seed, positive for reproducible results")
|
295 |
+
image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"],
|
296 |
+
value="1:1", label="Image Ratio",
|
297 |
+
info="The longer size is fixed to 1024")
|
298 |
+
|
299 |
+
with gr.Row():
|
300 |
+
cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
|
301 |
+
label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0)")
|
302 |
+
cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1,
|
303 |
+
label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
|
304 |
+
|
305 |
+
with gr.Row():
|
306 |
+
cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
|
307 |
+
value="global", label="CFG Renorm Type",
|
308 |
+
info="If the genrated image is blurry, use 'global'")
|
309 |
+
cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
310 |
+
label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
|
311 |
+
|
312 |
+
with gr.Row():
|
313 |
+
num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
|
314 |
+
label="Timesteps", info="Total denoising steps")
|
315 |
+
timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, interactive=True,
|
316 |
+
label="Timestep Shift", info="Higher values for layout, lower for details")
|
317 |
+
|
318 |
+
# Thinking parameters in a single row
|
319 |
+
thinking_params = gr.Group(visible=False)
|
320 |
+
with thinking_params:
|
321 |
+
with gr.Row():
|
322 |
+
do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
323 |
+
max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
|
324 |
+
label="Max Think Tokens", info="Maximum number of tokens for thinking")
|
325 |
+
text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
|
326 |
+
label="Temperature", info="Controls randomness in text generation")
|
327 |
+
|
328 |
+
thinking_output = gr.Textbox(label="Thinking Process", visible=False)
|
329 |
+
img_output = gr.Image(label="Generated Image")
|
330 |
+
gen_btn = gr.Button("Generate")
|
331 |
+
|
332 |
+
# Dynamically show/hide thinking process box and parameters
|
333 |
+
def update_thinking_visibility(show):
|
334 |
+
return gr.update(visible=show), gr.update(visible=show)
|
335 |
+
|
336 |
+
show_thinking.change(
|
337 |
+
fn=update_thinking_visibility,
|
338 |
+
inputs=[show_thinking],
|
339 |
+
outputs=[thinking_output, thinking_params]
|
340 |
+
)
|
341 |
+
|
342 |
+
gen_btn.click(
|
343 |
+
fn=text_to_image,
|
344 |
+
inputs=[
|
345 |
+
txt_input, show_thinking, cfg_text_scale,
|
346 |
+
cfg_interval, timestep_shift,
|
347 |
+
num_timesteps, cfg_renorm_min, cfg_renorm_type,
|
348 |
+
max_think_token_n, do_sample, text_temperature, seed, image_ratio
|
349 |
+
],
|
350 |
+
outputs=[img_output, thinking_output]
|
351 |
+
)
|
352 |
+
|
353 |
+
with gr.Tab("🖌️ Image Edit"):
|
354 |
+
with gr.Row():
|
355 |
+
with gr.Column(scale=1):
|
356 |
+
edit_image_input = gr.Image(label="Input Image", value=load_example_image('test_images/women.jpg'))
|
357 |
+
edit_prompt = gr.Textbox(
|
358 |
+
label="Prompt",
|
359 |
+
value="She boards a modern subway, quietly reading a folded newspaper, wearing the same clothes."
|
360 |
+
)
|
361 |
+
|
362 |
+
with gr.Column(scale=1):
|
363 |
+
edit_image_output = gr.Image(label="Result")
|
364 |
+
edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False)
|
365 |
+
|
366 |
+
with gr.Row():
|
367 |
+
edit_show_thinking = gr.Checkbox(label="Thinking", value=False)
|
368 |
+
|
369 |
+
# Add hyperparameter controls in an accordion
|
370 |
+
with gr.Accordion("Inference Hyperparameters", open=False):
|
371 |
+
with gr.Group():
|
372 |
+
with gr.Row():
|
373 |
+
edit_seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, interactive=True,
|
374 |
+
label="Seed", info="0 for random seed, positive for reproducible results")
|
375 |
+
edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
|
376 |
+
label="CFG Text Scale", info="Controls how strongly the model follows the text prompt")
|
377 |
+
|
378 |
+
with gr.Row():
|
379 |
+
edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, interactive=True,
|
380 |
+
label="CFG Image Scale", info="Controls how much the model preserves input image details")
|
381 |
+
edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
382 |
+
label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
|
383 |
+
|
384 |
+
with gr.Row():
|
385 |
+
edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"],
|
386 |
+
value="text_channel", label="CFG Renorm Type",
|
387 |
+
info="If the genrated image is blurry, use 'global")
|
388 |
+
edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
|
389 |
+
label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
|
390 |
+
|
391 |
+
with gr.Row():
|
392 |
+
edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
|
393 |
+
label="Timesteps", info="Total denoising steps")
|
394 |
+
edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, interactive=True,
|
395 |
+
label="Timestep Shift", info="Higher values for layout, lower for details")
|
396 |
+
|
397 |
+
|
398 |
+
# Thinking parameters in a single row
|
399 |
+
edit_thinking_params = gr.Group(visible=False)
|
400 |
+
with edit_thinking_params:
|
401 |
+
with gr.Row():
|
402 |
+
edit_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
403 |
+
edit_max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
|
404 |
+
label="Max Think Tokens", info="Maximum number of tokens for thinking")
|
405 |
+
edit_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
|
406 |
+
label="Temperature", info="Controls randomness in text generation")
|
407 |
+
|
408 |
+
edit_btn = gr.Button("Submit")
|
409 |
+
|
410 |
+
# Dynamically show/hide thinking process box for editing
|
411 |
+
def update_edit_thinking_visibility(show):
|
412 |
+
return gr.update(visible=show), gr.update(visible=show)
|
413 |
+
|
414 |
+
edit_show_thinking.change(
|
415 |
+
fn=update_edit_thinking_visibility,
|
416 |
+
inputs=[edit_show_thinking],
|
417 |
+
outputs=[edit_thinking_output, edit_thinking_params]
|
418 |
+
)
|
419 |
+
|
420 |
+
edit_btn.click(
|
421 |
+
fn=edit_image,
|
422 |
+
inputs=[
|
423 |
+
edit_image_input, edit_prompt, edit_show_thinking,
|
424 |
+
edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval,
|
425 |
+
edit_timestep_shift, edit_num_timesteps,
|
426 |
+
edit_cfg_renorm_min, edit_cfg_renorm_type,
|
427 |
+
edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed
|
428 |
+
],
|
429 |
+
outputs=[edit_image_output, edit_thinking_output]
|
430 |
+
)
|
431 |
+
|
432 |
+
with gr.Tab("🖼️ Image Understanding"):
|
433 |
+
with gr.Row():
|
434 |
+
with gr.Column(scale=1):
|
435 |
+
img_input = gr.Image(label="Input Image", value=load_example_image('test_images/meme.jpg'))
|
436 |
+
understand_prompt = gr.Textbox(
|
437 |
+
label="Prompt",
|
438 |
+
value="Can someone explain what's funny about this meme??"
|
439 |
+
)
|
440 |
+
|
441 |
+
with gr.Column(scale=1):
|
442 |
+
txt_output = gr.Textbox(label="Result", lines=20)
|
443 |
+
|
444 |
+
with gr.Row():
|
445 |
+
understand_show_thinking = gr.Checkbox(label="Thinking", value=False)
|
446 |
+
|
447 |
+
# Add hyperparameter controls in an accordion
|
448 |
+
with gr.Accordion("Inference Hyperparameters", open=False):
|
449 |
+
with gr.Row():
|
450 |
+
understand_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
|
451 |
+
understand_text_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, interactive=True,
|
452 |
+
label="Temperature", info="Controls randomness in text generation (0=deterministic, 1=creative)")
|
453 |
+
understand_max_new_tokens = gr.Slider(minimum=64, maximum=4096, value=512, step=64, interactive=True,
|
454 |
+
label="Max New Tokens", info="Maximum length of generated text, including potential thinking")
|
455 |
+
|
456 |
+
img_understand_btn = gr.Button("Submit")
|
457 |
+
|
458 |
+
img_understand_btn.click(
|
459 |
+
fn=image_understanding,
|
460 |
+
inputs=[
|
461 |
+
img_input, understand_prompt, understand_show_thinking,
|
462 |
+
understand_do_sample, understand_text_temperature, understand_max_new_tokens
|
463 |
+
],
|
464 |
+
outputs=txt_output
|
465 |
+
)
|
466 |
+
|
467 |
+
gr.Markdown("""
|
468 |
+
<div style="display: flex; justify-content: flex-start; flex-wrap: wrap; gap: 10px;">
|
469 |
+
<a href="https://bagel-ai.org/">
|
470 |
+
<img
|
471 |
+
src="https://img.shields.io/badge/BAGEL-Website-0A66C2?logo=safari&logoColor=white"
|
472 |
+
alt="BAGEL Website"
|
473 |
+
/>
|
474 |
+
</a>
|
475 |
+
<a href="https://arxiv.org/abs/2505.14683">
|
476 |
+
<img
|
477 |
+
src="https://img.shields.io/badge/BAGEL-Paper-red?logo=arxiv&logoColor=red"
|
478 |
+
alt="BAGEL Paper on arXiv"
|
479 |
+
/>
|
480 |
+
</a>
|
481 |
+
<a href="https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT">
|
482 |
+
<img
|
483 |
+
src="https://img.shields.io/badge/BAGEL-Hugging%20Face-orange?logo=huggingface&logoColor=yellow"
|
484 |
+
alt="BAGEL on Hugging Face"
|
485 |
+
/>
|
486 |
+
</a>
|
487 |
+
<a href="https://demo.bagel-ai.org/">
|
488 |
+
<img
|
489 |
+
src="https://img.shields.io/badge/BAGEL-Demo-blue?logo=googleplay&logoColor=blue"
|
490 |
+
alt="BAGEL Demo"
|
491 |
+
/>
|
492 |
+
</a>
|
493 |
+
<a href="https://discord.gg/Z836xxzy">
|
494 |
+
<img
|
495 |
+
src="https://img.shields.io/badge/BAGEL-Discord-5865F2?logo=discord&logoColor=purple"
|
496 |
+
alt="BAGEL Discord"
|
497 |
+
/>
|
498 |
+
</a>
|
499 |
+
<a href="mailto:[email protected]">
|
500 |
+
<img
|
501 |
+
src="https://img.shields.io/badge/BAGEL-Email-D14836?logo=gmail&logoColor=red"
|
502 |
+
alt="BAGEL Email"
|
503 |
+
/>
|
504 |
+
</a>
|
505 |
+
</div>
|
506 |
+
""")
|
507 |
+
|
508 |
+
demo.launch()
|
modeling/__init__.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
from . import bagel, qwen2, siglip, autoencoder
|
|
|
1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
from . import bagel, qwen2, siglip, autoencoder
|
modeling/autoencoder.py
CHANGED
@@ -1,361 +1,361 @@
|
|
1 |
-
# Copyright (c) 2024 Black Forest Labs.
|
2 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
|
3 |
-
# SPDX-License-Identifier: Apache-2.0
|
4 |
-
#
|
5 |
-
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
|
6 |
-
#
|
7 |
-
# Original file was released under Apache-2.0, with the full license text
|
8 |
-
# available at https://github.com/black-forest-labs/flux/blob/main/LICENSE.
|
9 |
-
#
|
10 |
-
# This modified file is released under the same license.
|
11 |
-
|
12 |
-
from dataclasses import dataclass
|
13 |
-
|
14 |
-
import torch
|
15 |
-
from einops import rearrange
|
16 |
-
from torch import Tensor, nn
|
17 |
-
from huggingface_hub import hf_hub_download
|
18 |
-
from safetensors.torch import load_file as load_sft
|
19 |
-
|
20 |
-
|
21 |
-
@dataclass
|
22 |
-
class AutoEncoderParams:
|
23 |
-
resolution: int
|
24 |
-
in_channels: int
|
25 |
-
downsample: int
|
26 |
-
ch: int
|
27 |
-
out_ch: int
|
28 |
-
ch_mult: list[int]
|
29 |
-
num_res_blocks: int
|
30 |
-
z_channels: int
|
31 |
-
scale_factor: float
|
32 |
-
shift_factor: float
|
33 |
-
|
34 |
-
|
35 |
-
def swish(x: Tensor) -> Tensor:
|
36 |
-
return x * torch.sigmoid(x)
|
37 |
-
|
38 |
-
|
39 |
-
class AttnBlock(nn.Module):
|
40 |
-
def __init__(self, in_channels: int):
|
41 |
-
super().__init__()
|
42 |
-
self.in_channels = in_channels
|
43 |
-
|
44 |
-
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
45 |
-
|
46 |
-
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
47 |
-
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
48 |
-
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
49 |
-
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
50 |
-
|
51 |
-
def attention(self, h_: Tensor) -> Tensor:
|
52 |
-
h_ = self.norm(h_)
|
53 |
-
q = self.q(h_)
|
54 |
-
k = self.k(h_)
|
55 |
-
v = self.v(h_)
|
56 |
-
|
57 |
-
b, c, h, w = q.shape
|
58 |
-
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
59 |
-
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
60 |
-
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
61 |
-
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
62 |
-
|
63 |
-
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
64 |
-
|
65 |
-
def forward(self, x: Tensor) -> Tensor:
|
66 |
-
return x + self.proj_out(self.attention(x))
|
67 |
-
|
68 |
-
|
69 |
-
class ResnetBlock(nn.Module):
|
70 |
-
def __init__(self, in_channels: int, out_channels: int):
|
71 |
-
super().__init__()
|
72 |
-
self.in_channels = in_channels
|
73 |
-
out_channels = in_channels if out_channels is None else out_channels
|
74 |
-
self.out_channels = out_channels
|
75 |
-
|
76 |
-
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
77 |
-
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
78 |
-
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
79 |
-
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
80 |
-
if self.in_channels != self.out_channels:
|
81 |
-
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
82 |
-
|
83 |
-
def forward(self, x):
|
84 |
-
h = x
|
85 |
-
h = self.norm1(h)
|
86 |
-
h = swish(h)
|
87 |
-
h = self.conv1(h)
|
88 |
-
|
89 |
-
h = self.norm2(h)
|
90 |
-
h = swish(h)
|
91 |
-
h = self.conv2(h)
|
92 |
-
|
93 |
-
if self.in_channels != self.out_channels:
|
94 |
-
x = self.nin_shortcut(x)
|
95 |
-
|
96 |
-
return x + h
|
97 |
-
|
98 |
-
|
99 |
-
class Downsample(nn.Module):
|
100 |
-
def __init__(self, in_channels: int):
|
101 |
-
super().__init__()
|
102 |
-
# no asymmetric padding in torch conv, must do it ourselves
|
103 |
-
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
104 |
-
|
105 |
-
def forward(self, x: Tensor):
|
106 |
-
pad = (0, 1, 0, 1)
|
107 |
-
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
108 |
-
x = self.conv(x)
|
109 |
-
return x
|
110 |
-
|
111 |
-
|
112 |
-
class Upsample(nn.Module):
|
113 |
-
def __init__(self, in_channels: int):
|
114 |
-
super().__init__()
|
115 |
-
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
116 |
-
|
117 |
-
def forward(self, x: Tensor):
|
118 |
-
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
119 |
-
x = self.conv(x)
|
120 |
-
return x
|
121 |
-
|
122 |
-
|
123 |
-
class Encoder(nn.Module):
|
124 |
-
def __init__(
|
125 |
-
self,
|
126 |
-
resolution: int,
|
127 |
-
in_channels: int,
|
128 |
-
ch: int,
|
129 |
-
ch_mult: list[int],
|
130 |
-
num_res_blocks: int,
|
131 |
-
z_channels: int,
|
132 |
-
):
|
133 |
-
super().__init__()
|
134 |
-
self.ch = ch
|
135 |
-
self.num_resolutions = len(ch_mult)
|
136 |
-
self.num_res_blocks = num_res_blocks
|
137 |
-
self.resolution = resolution
|
138 |
-
self.in_channels = in_channels
|
139 |
-
# downsampling
|
140 |
-
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
141 |
-
|
142 |
-
curr_res = resolution
|
143 |
-
in_ch_mult = (1,) + tuple(ch_mult)
|
144 |
-
self.in_ch_mult = in_ch_mult
|
145 |
-
self.down = nn.ModuleList()
|
146 |
-
block_in = self.ch
|
147 |
-
for i_level in range(self.num_resolutions):
|
148 |
-
block = nn.ModuleList()
|
149 |
-
attn = nn.ModuleList()
|
150 |
-
block_in = ch * in_ch_mult[i_level]
|
151 |
-
block_out = ch * ch_mult[i_level]
|
152 |
-
for _ in range(self.num_res_blocks):
|
153 |
-
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
154 |
-
block_in = block_out
|
155 |
-
down = nn.Module()
|
156 |
-
down.block = block
|
157 |
-
down.attn = attn
|
158 |
-
if i_level != self.num_resolutions - 1:
|
159 |
-
down.downsample = Downsample(block_in)
|
160 |
-
curr_res = curr_res // 2
|
161 |
-
self.down.append(down)
|
162 |
-
|
163 |
-
# middle
|
164 |
-
self.mid = nn.Module()
|
165 |
-
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
166 |
-
self.mid.attn_1 = AttnBlock(block_in)
|
167 |
-
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
168 |
-
|
169 |
-
# end
|
170 |
-
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
171 |
-
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
|
172 |
-
|
173 |
-
def forward(self, x: Tensor) -> Tensor:
|
174 |
-
# downsampling
|
175 |
-
hs = [self.conv_in(x)]
|
176 |
-
for i_level in range(self.num_resolutions):
|
177 |
-
for i_block in range(self.num_res_blocks):
|
178 |
-
h = self.down[i_level].block[i_block](hs[-1])
|
179 |
-
if len(self.down[i_level].attn) > 0:
|
180 |
-
h = self.down[i_level].attn[i_block](h)
|
181 |
-
hs.append(h)
|
182 |
-
if i_level != self.num_resolutions - 1:
|
183 |
-
hs.append(self.down[i_level].downsample(hs[-1]))
|
184 |
-
|
185 |
-
# middle
|
186 |
-
h = hs[-1]
|
187 |
-
h = self.mid.block_1(h)
|
188 |
-
h = self.mid.attn_1(h)
|
189 |
-
h = self.mid.block_2(h)
|
190 |
-
# end
|
191 |
-
h = self.norm_out(h)
|
192 |
-
h = swish(h)
|
193 |
-
h = self.conv_out(h)
|
194 |
-
return h
|
195 |
-
|
196 |
-
|
197 |
-
class Decoder(nn.Module):
|
198 |
-
def __init__(
|
199 |
-
self,
|
200 |
-
ch: int,
|
201 |
-
out_ch: int,
|
202 |
-
ch_mult: list[int],
|
203 |
-
num_res_blocks: int,
|
204 |
-
in_channels: int,
|
205 |
-
resolution: int,
|
206 |
-
z_channels: int,
|
207 |
-
):
|
208 |
-
super().__init__()
|
209 |
-
self.ch = ch
|
210 |
-
self.num_resolutions = len(ch_mult)
|
211 |
-
self.num_res_blocks = num_res_blocks
|
212 |
-
self.resolution = resolution
|
213 |
-
self.in_channels = in_channels
|
214 |
-
self.ffactor = 2 ** (self.num_resolutions - 1)
|
215 |
-
|
216 |
-
# compute in_ch_mult, block_in and curr_res at lowest res
|
217 |
-
block_in = ch * ch_mult[self.num_resolutions - 1]
|
218 |
-
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
219 |
-
self.z_shape = (1, z_channels, curr_res, curr_res)
|
220 |
-
|
221 |
-
# z to block_in
|
222 |
-
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
223 |
-
|
224 |
-
# middle
|
225 |
-
self.mid = nn.Module()
|
226 |
-
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
227 |
-
self.mid.attn_1 = AttnBlock(block_in)
|
228 |
-
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
229 |
-
|
230 |
-
# upsampling
|
231 |
-
self.up = nn.ModuleList()
|
232 |
-
for i_level in reversed(range(self.num_resolutions)):
|
233 |
-
block = nn.ModuleList()
|
234 |
-
attn = nn.ModuleList()
|
235 |
-
block_out = ch * ch_mult[i_level]
|
236 |
-
for _ in range(self.num_res_blocks + 1):
|
237 |
-
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
238 |
-
block_in = block_out
|
239 |
-
up = nn.Module()
|
240 |
-
up.block = block
|
241 |
-
up.attn = attn
|
242 |
-
if i_level != 0:
|
243 |
-
up.upsample = Upsample(block_in)
|
244 |
-
curr_res = curr_res * 2
|
245 |
-
self.up.insert(0, up) # prepend to get consistent order
|
246 |
-
|
247 |
-
# end
|
248 |
-
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
249 |
-
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
250 |
-
|
251 |
-
def forward(self, z: Tensor) -> Tensor:
|
252 |
-
# z to block_in
|
253 |
-
h = self.conv_in(z)
|
254 |
-
|
255 |
-
# middle
|
256 |
-
h = self.mid.block_1(h)
|
257 |
-
h = self.mid.attn_1(h)
|
258 |
-
h = self.mid.block_2(h)
|
259 |
-
|
260 |
-
# upsampling
|
261 |
-
for i_level in reversed(range(self.num_resolutions)):
|
262 |
-
for i_block in range(self.num_res_blocks + 1):
|
263 |
-
h = self.up[i_level].block[i_block](h)
|
264 |
-
if len(self.up[i_level].attn) > 0:
|
265 |
-
h = self.up[i_level].attn[i_block](h)
|
266 |
-
if i_level != 0:
|
267 |
-
h = self.up[i_level].upsample(h)
|
268 |
-
|
269 |
-
# end
|
270 |
-
h = self.norm_out(h)
|
271 |
-
h = swish(h)
|
272 |
-
h = self.conv_out(h)
|
273 |
-
return h
|
274 |
-
|
275 |
-
|
276 |
-
class DiagonalGaussian(nn.Module):
|
277 |
-
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
278 |
-
super().__init__()
|
279 |
-
self.sample = sample
|
280 |
-
self.chunk_dim = chunk_dim
|
281 |
-
|
282 |
-
def forward(self, z: Tensor) -> Tensor:
|
283 |
-
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
284 |
-
if self.sample:
|
285 |
-
std = torch.exp(0.5 * logvar)
|
286 |
-
return mean + std * torch.randn_like(mean)
|
287 |
-
else:
|
288 |
-
return mean
|
289 |
-
|
290 |
-
|
291 |
-
class AutoEncoder(nn.Module):
|
292 |
-
def __init__(self, params: AutoEncoderParams):
|
293 |
-
super().__init__()
|
294 |
-
self.encoder = Encoder(
|
295 |
-
resolution=params.resolution,
|
296 |
-
in_channels=params.in_channels,
|
297 |
-
ch=params.ch,
|
298 |
-
ch_mult=params.ch_mult,
|
299 |
-
num_res_blocks=params.num_res_blocks,
|
300 |
-
z_channels=params.z_channels,
|
301 |
-
)
|
302 |
-
self.decoder = Decoder(
|
303 |
-
resolution=params.resolution,
|
304 |
-
in_channels=params.in_channels,
|
305 |
-
ch=params.ch,
|
306 |
-
out_ch=params.out_ch,
|
307 |
-
ch_mult=params.ch_mult,
|
308 |
-
num_res_blocks=params.num_res_blocks,
|
309 |
-
z_channels=params.z_channels,
|
310 |
-
)
|
311 |
-
self.reg = DiagonalGaussian()
|
312 |
-
|
313 |
-
self.scale_factor = params.scale_factor
|
314 |
-
self.shift_factor = params.shift_factor
|
315 |
-
|
316 |
-
def encode(self, x: Tensor) -> Tensor:
|
317 |
-
z = self.reg(self.encoder(x))
|
318 |
-
z = self.scale_factor * (z - self.shift_factor)
|
319 |
-
return z
|
320 |
-
|
321 |
-
def decode(self, z: Tensor) -> Tensor:
|
322 |
-
z = z / self.scale_factor + self.shift_factor
|
323 |
-
return self.decoder(z)
|
324 |
-
|
325 |
-
def forward(self, x: Tensor) -> Tensor:
|
326 |
-
return self.decode(self.encode(x))
|
327 |
-
|
328 |
-
|
329 |
-
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
330 |
-
if len(missing) > 0 and len(unexpected) > 0:
|
331 |
-
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
332 |
-
print("\n" + "-" * 79 + "\n")
|
333 |
-
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
334 |
-
elif len(missing) > 0:
|
335 |
-
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
336 |
-
elif len(unexpected) > 0:
|
337 |
-
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
338 |
-
|
339 |
-
|
340 |
-
def load_ae(local_path: str) -> AutoEncoder:
|
341 |
-
ae_params = AutoEncoderParams(
|
342 |
-
resolution=256,
|
343 |
-
in_channels=3,
|
344 |
-
downsample=8,
|
345 |
-
ch=128,
|
346 |
-
out_ch=3,
|
347 |
-
ch_mult=[1, 2, 4, 4],
|
348 |
-
num_res_blocks=2,
|
349 |
-
z_channels=16,
|
350 |
-
scale_factor=0.3611,
|
351 |
-
shift_factor=0.1159,
|
352 |
-
)
|
353 |
-
|
354 |
-
# Loading the autoencoder
|
355 |
-
ae = AutoEncoder(ae_params)
|
356 |
-
|
357 |
-
if local_path is not None:
|
358 |
-
sd = load_sft(local_path)
|
359 |
-
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
|
360 |
-
print_load_warning(missing, unexpected)
|
361 |
-
return ae, ae_params
|
|
|
1 |
+
# Copyright (c) 2024 Black Forest Labs.
|
2 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
|
3 |
+
# SPDX-License-Identifier: Apache-2.0
|
4 |
+
#
|
5 |
+
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
|
6 |
+
#
|
7 |
+
# Original file was released under Apache-2.0, with the full license text
|
8 |
+
# available at https://github.com/black-forest-labs/flux/blob/main/LICENSE.
|
9 |
+
#
|
10 |
+
# This modified file is released under the same license.
|
11 |
+
|
12 |
+
from dataclasses import dataclass
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from einops import rearrange
|
16 |
+
from torch import Tensor, nn
|
17 |
+
from huggingface_hub import hf_hub_download
|
18 |
+
from safetensors.torch import load_file as load_sft
|
19 |
+
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class AutoEncoderParams:
|
23 |
+
resolution: int
|
24 |
+
in_channels: int
|
25 |
+
downsample: int
|
26 |
+
ch: int
|
27 |
+
out_ch: int
|
28 |
+
ch_mult: list[int]
|
29 |
+
num_res_blocks: int
|
30 |
+
z_channels: int
|
31 |
+
scale_factor: float
|
32 |
+
shift_factor: float
|
33 |
+
|
34 |
+
|
35 |
+
def swish(x: Tensor) -> Tensor:
|
36 |
+
return x * torch.sigmoid(x)
|
37 |
+
|
38 |
+
|
39 |
+
class AttnBlock(nn.Module):
|
40 |
+
def __init__(self, in_channels: int):
|
41 |
+
super().__init__()
|
42 |
+
self.in_channels = in_channels
|
43 |
+
|
44 |
+
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
45 |
+
|
46 |
+
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
47 |
+
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
48 |
+
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
49 |
+
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
|
50 |
+
|
51 |
+
def attention(self, h_: Tensor) -> Tensor:
|
52 |
+
h_ = self.norm(h_)
|
53 |
+
q = self.q(h_)
|
54 |
+
k = self.k(h_)
|
55 |
+
v = self.v(h_)
|
56 |
+
|
57 |
+
b, c, h, w = q.shape
|
58 |
+
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
|
59 |
+
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
|
60 |
+
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
|
61 |
+
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
|
62 |
+
|
63 |
+
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
64 |
+
|
65 |
+
def forward(self, x: Tensor) -> Tensor:
|
66 |
+
return x + self.proj_out(self.attention(x))
|
67 |
+
|
68 |
+
|
69 |
+
class ResnetBlock(nn.Module):
|
70 |
+
def __init__(self, in_channels: int, out_channels: int):
|
71 |
+
super().__init__()
|
72 |
+
self.in_channels = in_channels
|
73 |
+
out_channels = in_channels if out_channels is None else out_channels
|
74 |
+
self.out_channels = out_channels
|
75 |
+
|
76 |
+
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
77 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
78 |
+
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
|
79 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
80 |
+
if self.in_channels != self.out_channels:
|
81 |
+
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
82 |
+
|
83 |
+
def forward(self, x):
|
84 |
+
h = x
|
85 |
+
h = self.norm1(h)
|
86 |
+
h = swish(h)
|
87 |
+
h = self.conv1(h)
|
88 |
+
|
89 |
+
h = self.norm2(h)
|
90 |
+
h = swish(h)
|
91 |
+
h = self.conv2(h)
|
92 |
+
|
93 |
+
if self.in_channels != self.out_channels:
|
94 |
+
x = self.nin_shortcut(x)
|
95 |
+
|
96 |
+
return x + h
|
97 |
+
|
98 |
+
|
99 |
+
class Downsample(nn.Module):
|
100 |
+
def __init__(self, in_channels: int):
|
101 |
+
super().__init__()
|
102 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
103 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
|
104 |
+
|
105 |
+
def forward(self, x: Tensor):
|
106 |
+
pad = (0, 1, 0, 1)
|
107 |
+
x = nn.functional.pad(x, pad, mode="constant", value=0)
|
108 |
+
x = self.conv(x)
|
109 |
+
return x
|
110 |
+
|
111 |
+
|
112 |
+
class Upsample(nn.Module):
|
113 |
+
def __init__(self, in_channels: int):
|
114 |
+
super().__init__()
|
115 |
+
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
|
116 |
+
|
117 |
+
def forward(self, x: Tensor):
|
118 |
+
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
119 |
+
x = self.conv(x)
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
class Encoder(nn.Module):
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
resolution: int,
|
127 |
+
in_channels: int,
|
128 |
+
ch: int,
|
129 |
+
ch_mult: list[int],
|
130 |
+
num_res_blocks: int,
|
131 |
+
z_channels: int,
|
132 |
+
):
|
133 |
+
super().__init__()
|
134 |
+
self.ch = ch
|
135 |
+
self.num_resolutions = len(ch_mult)
|
136 |
+
self.num_res_blocks = num_res_blocks
|
137 |
+
self.resolution = resolution
|
138 |
+
self.in_channels = in_channels
|
139 |
+
# downsampling
|
140 |
+
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
|
141 |
+
|
142 |
+
curr_res = resolution
|
143 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
144 |
+
self.in_ch_mult = in_ch_mult
|
145 |
+
self.down = nn.ModuleList()
|
146 |
+
block_in = self.ch
|
147 |
+
for i_level in range(self.num_resolutions):
|
148 |
+
block = nn.ModuleList()
|
149 |
+
attn = nn.ModuleList()
|
150 |
+
block_in = ch * in_ch_mult[i_level]
|
151 |
+
block_out = ch * ch_mult[i_level]
|
152 |
+
for _ in range(self.num_res_blocks):
|
153 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
154 |
+
block_in = block_out
|
155 |
+
down = nn.Module()
|
156 |
+
down.block = block
|
157 |
+
down.attn = attn
|
158 |
+
if i_level != self.num_resolutions - 1:
|
159 |
+
down.downsample = Downsample(block_in)
|
160 |
+
curr_res = curr_res // 2
|
161 |
+
self.down.append(down)
|
162 |
+
|
163 |
+
# middle
|
164 |
+
self.mid = nn.Module()
|
165 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
166 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
167 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
168 |
+
|
169 |
+
# end
|
170 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
171 |
+
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
|
172 |
+
|
173 |
+
def forward(self, x: Tensor) -> Tensor:
|
174 |
+
# downsampling
|
175 |
+
hs = [self.conv_in(x)]
|
176 |
+
for i_level in range(self.num_resolutions):
|
177 |
+
for i_block in range(self.num_res_blocks):
|
178 |
+
h = self.down[i_level].block[i_block](hs[-1])
|
179 |
+
if len(self.down[i_level].attn) > 0:
|
180 |
+
h = self.down[i_level].attn[i_block](h)
|
181 |
+
hs.append(h)
|
182 |
+
if i_level != self.num_resolutions - 1:
|
183 |
+
hs.append(self.down[i_level].downsample(hs[-1]))
|
184 |
+
|
185 |
+
# middle
|
186 |
+
h = hs[-1]
|
187 |
+
h = self.mid.block_1(h)
|
188 |
+
h = self.mid.attn_1(h)
|
189 |
+
h = self.mid.block_2(h)
|
190 |
+
# end
|
191 |
+
h = self.norm_out(h)
|
192 |
+
h = swish(h)
|
193 |
+
h = self.conv_out(h)
|
194 |
+
return h
|
195 |
+
|
196 |
+
|
197 |
+
class Decoder(nn.Module):
|
198 |
+
def __init__(
|
199 |
+
self,
|
200 |
+
ch: int,
|
201 |
+
out_ch: int,
|
202 |
+
ch_mult: list[int],
|
203 |
+
num_res_blocks: int,
|
204 |
+
in_channels: int,
|
205 |
+
resolution: int,
|
206 |
+
z_channels: int,
|
207 |
+
):
|
208 |
+
super().__init__()
|
209 |
+
self.ch = ch
|
210 |
+
self.num_resolutions = len(ch_mult)
|
211 |
+
self.num_res_blocks = num_res_blocks
|
212 |
+
self.resolution = resolution
|
213 |
+
self.in_channels = in_channels
|
214 |
+
self.ffactor = 2 ** (self.num_resolutions - 1)
|
215 |
+
|
216 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
217 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
218 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
219 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
220 |
+
|
221 |
+
# z to block_in
|
222 |
+
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
223 |
+
|
224 |
+
# middle
|
225 |
+
self.mid = nn.Module()
|
226 |
+
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
227 |
+
self.mid.attn_1 = AttnBlock(block_in)
|
228 |
+
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
229 |
+
|
230 |
+
# upsampling
|
231 |
+
self.up = nn.ModuleList()
|
232 |
+
for i_level in reversed(range(self.num_resolutions)):
|
233 |
+
block = nn.ModuleList()
|
234 |
+
attn = nn.ModuleList()
|
235 |
+
block_out = ch * ch_mult[i_level]
|
236 |
+
for _ in range(self.num_res_blocks + 1):
|
237 |
+
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
238 |
+
block_in = block_out
|
239 |
+
up = nn.Module()
|
240 |
+
up.block = block
|
241 |
+
up.attn = attn
|
242 |
+
if i_level != 0:
|
243 |
+
up.upsample = Upsample(block_in)
|
244 |
+
curr_res = curr_res * 2
|
245 |
+
self.up.insert(0, up) # prepend to get consistent order
|
246 |
+
|
247 |
+
# end
|
248 |
+
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
|
249 |
+
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
250 |
+
|
251 |
+
def forward(self, z: Tensor) -> Tensor:
|
252 |
+
# z to block_in
|
253 |
+
h = self.conv_in(z)
|
254 |
+
|
255 |
+
# middle
|
256 |
+
h = self.mid.block_1(h)
|
257 |
+
h = self.mid.attn_1(h)
|
258 |
+
h = self.mid.block_2(h)
|
259 |
+
|
260 |
+
# upsampling
|
261 |
+
for i_level in reversed(range(self.num_resolutions)):
|
262 |
+
for i_block in range(self.num_res_blocks + 1):
|
263 |
+
h = self.up[i_level].block[i_block](h)
|
264 |
+
if len(self.up[i_level].attn) > 0:
|
265 |
+
h = self.up[i_level].attn[i_block](h)
|
266 |
+
if i_level != 0:
|
267 |
+
h = self.up[i_level].upsample(h)
|
268 |
+
|
269 |
+
# end
|
270 |
+
h = self.norm_out(h)
|
271 |
+
h = swish(h)
|
272 |
+
h = self.conv_out(h)
|
273 |
+
return h
|
274 |
+
|
275 |
+
|
276 |
+
class DiagonalGaussian(nn.Module):
|
277 |
+
def __init__(self, sample: bool = True, chunk_dim: int = 1):
|
278 |
+
super().__init__()
|
279 |
+
self.sample = sample
|
280 |
+
self.chunk_dim = chunk_dim
|
281 |
+
|
282 |
+
def forward(self, z: Tensor) -> Tensor:
|
283 |
+
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
|
284 |
+
if self.sample:
|
285 |
+
std = torch.exp(0.5 * logvar)
|
286 |
+
return mean + std * torch.randn_like(mean)
|
287 |
+
else:
|
288 |
+
return mean
|
289 |
+
|
290 |
+
|
291 |
+
class AutoEncoder(nn.Module):
|
292 |
+
def __init__(self, params: AutoEncoderParams):
|
293 |
+
super().__init__()
|
294 |
+
self.encoder = Encoder(
|
295 |
+
resolution=params.resolution,
|
296 |
+
in_channels=params.in_channels,
|
297 |
+
ch=params.ch,
|
298 |
+
ch_mult=params.ch_mult,
|
299 |
+
num_res_blocks=params.num_res_blocks,
|
300 |
+
z_channels=params.z_channels,
|
301 |
+
)
|
302 |
+
self.decoder = Decoder(
|
303 |
+
resolution=params.resolution,
|
304 |
+
in_channels=params.in_channels,
|
305 |
+
ch=params.ch,
|
306 |
+
out_ch=params.out_ch,
|
307 |
+
ch_mult=params.ch_mult,
|
308 |
+
num_res_blocks=params.num_res_blocks,
|
309 |
+
z_channels=params.z_channels,
|
310 |
+
)
|
311 |
+
self.reg = DiagonalGaussian()
|
312 |
+
|
313 |
+
self.scale_factor = params.scale_factor
|
314 |
+
self.shift_factor = params.shift_factor
|
315 |
+
|
316 |
+
def encode(self, x: Tensor) -> Tensor:
|
317 |
+
z = self.reg(self.encoder(x))
|
318 |
+
z = self.scale_factor * (z - self.shift_factor)
|
319 |
+
return z
|
320 |
+
|
321 |
+
def decode(self, z: Tensor) -> Tensor:
|
322 |
+
z = z / self.scale_factor + self.shift_factor
|
323 |
+
return self.decoder(z)
|
324 |
+
|
325 |
+
def forward(self, x: Tensor) -> Tensor:
|
326 |
+
return self.decode(self.encode(x))
|
327 |
+
|
328 |
+
|
329 |
+
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
330 |
+
if len(missing) > 0 and len(unexpected) > 0:
|
331 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
332 |
+
print("\n" + "-" * 79 + "\n")
|
333 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
334 |
+
elif len(missing) > 0:
|
335 |
+
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
336 |
+
elif len(unexpected) > 0:
|
337 |
+
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
338 |
+
|
339 |
+
|
340 |
+
def load_ae(local_path: str) -> AutoEncoder:
|
341 |
+
ae_params = AutoEncoderParams(
|
342 |
+
resolution=256,
|
343 |
+
in_channels=3,
|
344 |
+
downsample=8,
|
345 |
+
ch=128,
|
346 |
+
out_ch=3,
|
347 |
+
ch_mult=[1, 2, 4, 4],
|
348 |
+
num_res_blocks=2,
|
349 |
+
z_channels=16,
|
350 |
+
scale_factor=0.3611,
|
351 |
+
shift_factor=0.1159,
|
352 |
+
)
|
353 |
+
|
354 |
+
# Loading the autoencoder
|
355 |
+
ae = AutoEncoder(ae_params)
|
356 |
+
|
357 |
+
if local_path is not None:
|
358 |
+
sd = load_sft(local_path)
|
359 |
+
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
|
360 |
+
print_load_warning(missing, unexpected)
|
361 |
+
return ae, ae_params
|
modeling/bagel/__init__.py
CHANGED
@@ -1,18 +1,18 @@
|
|
1 |
-
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
|
5 |
-
from .bagel import BagelConfig, Bagel
|
6 |
-
from .qwen2_navit import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
7 |
-
from .siglip_navit import SiglipVisionConfig, SiglipVisionModel
|
8 |
-
|
9 |
-
|
10 |
-
__all__ = [
|
11 |
-
'BagelConfig',
|
12 |
-
'Bagel',
|
13 |
-
'Qwen2Config',
|
14 |
-
'Qwen2Model',
|
15 |
-
'Qwen2ForCausalLM',
|
16 |
-
'SiglipVisionConfig',
|
17 |
-
'SiglipVisionModel',
|
18 |
-
]
|
|
|
1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
|
5 |
+
from .bagel import BagelConfig, Bagel
|
6 |
+
from .qwen2_navit import Qwen2Config, Qwen2Model, Qwen2ForCausalLM
|
7 |
+
from .siglip_navit import SiglipVisionConfig, SiglipVisionModel
|
8 |
+
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
'BagelConfig',
|
12 |
+
'Bagel',
|
13 |
+
'Qwen2Config',
|
14 |
+
'Qwen2Model',
|
15 |
+
'Qwen2ForCausalLM',
|
16 |
+
'SiglipVisionConfig',
|
17 |
+
'SiglipVisionModel',
|
18 |
+
]
|
modeling/bagel/bagel.py
CHANGED
@@ -1,1026 +1,1026 @@
|
|
1 |
-
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
import copy
|
5 |
-
from typing import List, Tuple, Optional
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
|
8 |
-
from PIL import Image
|
9 |
-
import torch
|
10 |
-
import torch.nn.functional as F
|
11 |
-
from torch import nn
|
12 |
-
from torch.nn.attention.flex_attention import create_block_mask
|
13 |
-
from transformers.configuration_utils import PretrainedConfig
|
14 |
-
from transformers.modeling_utils import PreTrainedModel
|
15 |
-
|
16 |
-
from data.data_utils import (
|
17 |
-
create_sparse_mask,
|
18 |
-
get_flattened_position_ids_extrapolate,
|
19 |
-
get_flattened_position_ids_interpolate,
|
20 |
-
patchify,
|
21 |
-
)
|
22 |
-
from .qwen2_navit import NaiveCache
|
23 |
-
from .modeling_utils import MLPconnector, TimestepEmbedder, PositionEmbedding
|
24 |
-
|
25 |
-
|
26 |
-
class BagelConfig(PretrainedConfig):
|
27 |
-
def __init__(
|
28 |
-
self,
|
29 |
-
visual_gen=True,
|
30 |
-
visual_und=True,
|
31 |
-
llm_config=None,
|
32 |
-
vit_config=None,
|
33 |
-
vae_config=None,
|
34 |
-
latent_patch_size=2,
|
35 |
-
max_latent_size=32,
|
36 |
-
vit_max_num_patch_per_side=70,
|
37 |
-
connector_act="gelu_pytorch_tanh",
|
38 |
-
interpolate_pos=False,
|
39 |
-
timestep_shift=1.0,
|
40 |
-
**kwargs
|
41 |
-
):
|
42 |
-
super().__init__(**kwargs)
|
43 |
-
self.visual_gen = visual_gen
|
44 |
-
self.visual_und = visual_und
|
45 |
-
self.llm_config = llm_config
|
46 |
-
self.vit_config = vit_config
|
47 |
-
self.vae_config = vae_config
|
48 |
-
self.latent_patch_size = latent_patch_size
|
49 |
-
self.max_latent_size = max_latent_size
|
50 |
-
self.vit_max_num_patch_per_side = vit_max_num_patch_per_side
|
51 |
-
self.connector_act = connector_act
|
52 |
-
self.interpolate_pos = interpolate_pos
|
53 |
-
self.timestep_shift = timestep_shift
|
54 |
-
|
55 |
-
|
56 |
-
class Bagel(PreTrainedModel):
|
57 |
-
config_class = BagelConfig
|
58 |
-
base_model_prefix = 'bagel'
|
59 |
-
|
60 |
-
def __init__(self, language_model, vit_model, config: BagelConfig):
|
61 |
-
super().__init__(config)
|
62 |
-
self.language_model = language_model
|
63 |
-
self.hidden_size = config.llm_config.hidden_size
|
64 |
-
self.use_moe = "Mo" in config.llm_config.layer_module
|
65 |
-
self.num_heads = config.llm_config.num_attention_heads
|
66 |
-
|
67 |
-
if config.visual_gen:
|
68 |
-
self.latent_patch_size = config.latent_patch_size
|
69 |
-
self.timestep_shift = config.timestep_shift
|
70 |
-
self.latent_downsample = config.vae_config.downsample * config.latent_patch_size
|
71 |
-
self.max_latent_size = config.max_latent_size
|
72 |
-
self.latent_channel = config.vae_config.z_channels
|
73 |
-
self.patch_latent_dim = self.latent_patch_size ** 2 * self.latent_channel
|
74 |
-
self.time_embedder = TimestepEmbedder(self.hidden_size)
|
75 |
-
self.vae2llm = nn.Linear(self.patch_latent_dim, self.hidden_size)
|
76 |
-
self.llm2vae = nn.Linear(self.hidden_size, self.patch_latent_dim)
|
77 |
-
self.latent_pos_embed = PositionEmbedding(self.max_latent_size, self.hidden_size)
|
78 |
-
|
79 |
-
if config.visual_und:
|
80 |
-
self.vit_model = vit_model
|
81 |
-
self.vit_patch_size = config.vit_config.patch_size
|
82 |
-
self.vit_max_num_patch_per_side = config.vit_max_num_patch_per_side
|
83 |
-
self.vit_hidden_size = config.vit_config.hidden_size
|
84 |
-
self.connector = MLPconnector(self.vit_hidden_size, self.hidden_size, config.connector_act)
|
85 |
-
self.vit_pos_embed = PositionEmbedding(self.vit_max_num_patch_per_side, self.hidden_size)
|
86 |
-
|
87 |
-
if config.interpolate_pos:
|
88 |
-
self.get_flattened_position_ids = get_flattened_position_ids_interpolate
|
89 |
-
else:
|
90 |
-
self.get_flattened_position_ids = get_flattened_position_ids_extrapolate
|
91 |
-
|
92 |
-
self.config = config
|
93 |
-
self._init_weights()
|
94 |
-
|
95 |
-
def _init_weights(self):
|
96 |
-
if self.config.visual_gen:
|
97 |
-
nn.init.constant_(self.llm2vae.weight, 0)
|
98 |
-
nn.init.constant_(self.llm2vae.bias, 0)
|
99 |
-
|
100 |
-
def forward(
|
101 |
-
self,
|
102 |
-
sequence_length: int,
|
103 |
-
packed_text_ids: torch.LongTensor,
|
104 |
-
packed_text_indexes: torch.LongTensor,
|
105 |
-
sample_lens: List[int],
|
106 |
-
packed_position_ids: torch.LongTensor,
|
107 |
-
nested_attention_masks: List[torch.Tensor] = None,
|
108 |
-
split_lens: List[int] = None,
|
109 |
-
attn_modes: List[str] = None,
|
110 |
-
# for visual understanding
|
111 |
-
ce_loss_indexes: Optional[torch.BoolTensor] = None,
|
112 |
-
packed_label_ids: Optional[torch.LongTensor] = None,
|
113 |
-
packed_vit_tokens: Optional[torch.Tensor] = None,
|
114 |
-
packed_vit_token_indexes: Optional[torch.LongTensor] = None,
|
115 |
-
packed_vit_position_ids: Optional[torch.LongTensor] = None,
|
116 |
-
vit_token_seqlens: Optional[torch.IntTensor] = None,
|
117 |
-
# for visual generation
|
118 |
-
padded_latent: Optional[torch.Tensor] = None,
|
119 |
-
patchified_vae_latent_shapes: Optional[List[Tuple[int, int]]] = None,
|
120 |
-
packed_latent_position_ids: Optional[torch.LongTensor] = None,
|
121 |
-
packed_vae_token_indexes: Optional[torch.LongTensor] = None,
|
122 |
-
packed_timesteps: Optional[torch.LongTensor] = None,
|
123 |
-
mse_loss_indexes: Optional[torch.BoolTensor] = None,
|
124 |
-
) -> torch.Tensor:
|
125 |
-
"""
|
126 |
-
Args:
|
127 |
-
sequence_length: length of sequence.
|
128 |
-
packed_text_ids: 1-D int tensor, packed text token ids.
|
129 |
-
packed_text_indexes: 1-D int tensor, packed text token indexes in sequence.
|
130 |
-
sample_lens: A list of N ints, length of each sample in packed_sequence.
|
131 |
-
nested_attention_masks: A list of N 2-D float tensor, where 0.0 means attention and
|
132 |
-
-inf means ignore.
|
133 |
-
packed_position_ids: packed 1-D positions, an image has only one global position shared
|
134 |
-
by all latent tokens.
|
135 |
-
|
136 |
-
packed_vit_tokens: packed patchified image tokens for vit model.
|
137 |
-
packed_vit_position_ids: 1-D int tensor, the position of each token for vit model.
|
138 |
-
packed_vit_token_indexes: 1-D int tensor, packed vit token indexes in sequence.
|
139 |
-
vit_token_seqlens: 1-D int tensor, the length of each image tokens for vit model.
|
140 |
-
packed_label_ids: 1-D int tensor, packed label token ids.
|
141 |
-
ce_loss_indexes: 1-D bool tensor, where to compute ce loss.
|
142 |
-
|
143 |
-
padded_latent: padded latent from VAE encoder.
|
144 |
-
patchified_vae_latent_shapes: A list of (h, w) tuples, patchfied latent shapes of each image.
|
145 |
-
packed_latent_position_ids: 1-D int tensor, the position of each token for latent.
|
146 |
-
packed_vae_token_indexes: 1-D int tensor, padded image token indexes in sequence.
|
147 |
-
packed_timesteps: 1-D float tensor, flow timesteps. 0 indicates use clean image.
|
148 |
-
mse_loss_indexes: 1-D bool tensor, where to compute mse loss.
|
149 |
-
"""
|
150 |
-
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
151 |
-
packed_sequence = packed_text_embedding.new_zeros(size=(sequence_length, self.hidden_size))
|
152 |
-
packed_sequence[packed_text_indexes] = packed_text_embedding
|
153 |
-
|
154 |
-
if nested_attention_masks is None:
|
155 |
-
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
156 |
-
seqlen = sum(sample_lens)
|
157 |
-
block_mask = create_block_mask(
|
158 |
-
sparse_mask, B=1, H=self.num_heads, Q_LEN=seqlen, KV_LEN=seqlen,
|
159 |
-
device=packed_text_embedding.device, BLOCK_SIZE=128, _compile=True
|
160 |
-
)
|
161 |
-
attention_mask = block_mask
|
162 |
-
else:
|
163 |
-
attention_mask = nested_attention_masks
|
164 |
-
|
165 |
-
if self.config.visual_und:
|
166 |
-
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
|
167 |
-
cu_seqlens = cu_seqlens.to(torch.int32)
|
168 |
-
max_seqlen = torch.max(vit_token_seqlens).item()
|
169 |
-
packed_vit_token_embed = self.vit_model(
|
170 |
-
packed_pixel_values=packed_vit_tokens,
|
171 |
-
packed_flattened_position_ids=packed_vit_position_ids,
|
172 |
-
cu_seqlens=cu_seqlens,
|
173 |
-
max_seqlen=max_seqlen,
|
174 |
-
)
|
175 |
-
packed_vit_token_embed = self.connector(packed_vit_token_embed)
|
176 |
-
vit_token_pos_emb = self.vit_pos_embed(packed_vit_position_ids)
|
177 |
-
packed_vit_token_embed = packed_vit_token_embed + vit_token_pos_emb
|
178 |
-
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
|
179 |
-
|
180 |
-
if self.config.visual_gen:
|
181 |
-
p = self.latent_patch_size
|
182 |
-
packed_latent = []
|
183 |
-
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
|
184 |
-
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
|
185 |
-
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
|
186 |
-
packed_latent.append(latent)
|
187 |
-
packed_latent_clean = torch.cat(packed_latent, dim=0)
|
188 |
-
|
189 |
-
noise = torch.randn_like(packed_latent_clean)
|
190 |
-
packed_timesteps = torch.sigmoid(packed_timesteps)
|
191 |
-
packed_timesteps = self.timestep_shift * packed_timesteps / (1 + (self.timestep_shift - 1) * packed_timesteps)
|
192 |
-
packed_latent = (1 - packed_timesteps[:, None]) * packed_latent_clean + packed_timesteps[:, None] * noise
|
193 |
-
packed_timestep_embeds = self.time_embedder(packed_timesteps)
|
194 |
-
latent_token_pos_emb = self.latent_pos_embed(packed_latent_position_ids)
|
195 |
-
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + latent_token_pos_emb
|
196 |
-
packed_sequence[packed_vae_token_indexes] = packed_latent
|
197 |
-
|
198 |
-
extra_inputs = {}
|
199 |
-
if self.use_moe:
|
200 |
-
packed_und_token_indexes = packed_text_indexes
|
201 |
-
if packed_vit_token_indexes is not None:
|
202 |
-
packed_und_token_indexes=torch.cat([packed_text_indexes, packed_vit_token_indexes], dim=0)
|
203 |
-
extra_inputs.update(
|
204 |
-
packed_und_token_indexes=packed_und_token_indexes,
|
205 |
-
packed_gen_token_indexes=packed_vae_token_indexes,
|
206 |
-
)
|
207 |
-
|
208 |
-
last_hidden_state = self.language_model(
|
209 |
-
packed_sequence=packed_sequence,
|
210 |
-
sample_lens=sample_lens,
|
211 |
-
attention_mask=attention_mask,
|
212 |
-
packed_position_ids=packed_position_ids,
|
213 |
-
**extra_inputs,
|
214 |
-
)
|
215 |
-
|
216 |
-
mse = None
|
217 |
-
if self.config.visual_gen:
|
218 |
-
packed_mse_preds = self.llm2vae(last_hidden_state[mse_loss_indexes])
|
219 |
-
target = noise - packed_latent_clean # NOTE: v_t=dx_t/dt=x_1-x_0, pointing from data to noise
|
220 |
-
has_mse = packed_timesteps > 0
|
221 |
-
mse = (packed_mse_preds - target[has_mse]) ** 2
|
222 |
-
|
223 |
-
ce = None
|
224 |
-
if ce_loss_indexes is not None:
|
225 |
-
packed_ce_preds = self.language_model.lm_head(last_hidden_state[ce_loss_indexes])
|
226 |
-
ce = F.cross_entropy(packed_ce_preds, packed_label_ids, reduction="none")
|
227 |
-
|
228 |
-
return dict(mse=mse, ce=ce)
|
229 |
-
|
230 |
-
|
231 |
-
def prepare_prompts(self, curr_kvlens, curr_rope, prompts, tokenizer, new_token_ids):
|
232 |
-
packed_text_ids = list()
|
233 |
-
packed_text_position_ids = list()
|
234 |
-
text_token_lens = list()
|
235 |
-
packed_text_indexes = list()
|
236 |
-
packed_key_value_indexes = list()
|
237 |
-
|
238 |
-
curr = 0
|
239 |
-
newlens, new_rope = list(), list()
|
240 |
-
for prompt, curr_kvlen, curr_position_id in zip(prompts, curr_kvlens, curr_rope):
|
241 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
242 |
-
curr += curr_kvlen
|
243 |
-
|
244 |
-
text_ids = tokenizer.encode(prompt)
|
245 |
-
text_ids = [new_token_ids['bos_token_id']] + text_ids + [new_token_ids['eos_token_id']]
|
246 |
-
text_token_lens.append(len(text_ids))
|
247 |
-
packed_text_ids.extend(text_ids)
|
248 |
-
packed_text_position_ids.extend(range(curr_position_id, curr_position_id + len(text_ids)))
|
249 |
-
packed_text_indexes.extend(range(curr, curr + len(text_ids)))
|
250 |
-
newlens.append(curr_kvlen + len(text_ids))
|
251 |
-
new_rope.append(curr_position_id + len(text_ids))
|
252 |
-
curr += len(text_ids)
|
253 |
-
|
254 |
-
generation_input = {
|
255 |
-
"text_token_lens": torch.tensor(text_token_lens, dtype=torch.int),
|
256 |
-
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
257 |
-
"packed_text_position_ids": torch.tensor(packed_text_position_ids, dtype=torch.long),
|
258 |
-
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
259 |
-
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
260 |
-
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
261 |
-
}
|
262 |
-
|
263 |
-
return generation_input, newlens, new_rope
|
264 |
-
|
265 |
-
@torch.no_grad
|
266 |
-
def forward_cache_update_text(
|
267 |
-
self,
|
268 |
-
past_key_values: NaiveCache,
|
269 |
-
packed_text_ids: torch.IntTensor,
|
270 |
-
packed_text_position_ids: torch.LongTensor,
|
271 |
-
text_token_lens: torch.LongTensor,
|
272 |
-
packed_text_indexes: torch.LongTensor,
|
273 |
-
packed_key_value_indexes: torch.LongTensor,
|
274 |
-
key_values_lens: torch.IntTensor,
|
275 |
-
):
|
276 |
-
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
277 |
-
|
278 |
-
extra_inputs = {}
|
279 |
-
if self.use_moe:
|
280 |
-
extra_inputs = {"mode": "und"}
|
281 |
-
|
282 |
-
output = self.language_model.forward_inference(
|
283 |
-
packed_query_sequence=packed_text_embedding,
|
284 |
-
query_lens=text_token_lens,
|
285 |
-
packed_query_position_ids=packed_text_position_ids,
|
286 |
-
packed_query_indexes=packed_text_indexes,
|
287 |
-
past_key_values=past_key_values,
|
288 |
-
packed_key_value_indexes=packed_key_value_indexes,
|
289 |
-
key_values_lens=key_values_lens,
|
290 |
-
update_past_key_values=True,
|
291 |
-
is_causal=True,
|
292 |
-
**extra_inputs,
|
293 |
-
)
|
294 |
-
past_key_values = output.past_key_values
|
295 |
-
|
296 |
-
return past_key_values
|
297 |
-
|
298 |
-
def prepare_vit_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids):
|
299 |
-
packed_vit_token_indexes = list()
|
300 |
-
vit_token_seqlens, packed_vit_tokens, packed_vit_position_ids = list(), list(), list()
|
301 |
-
packed_text_ids, packed_text_indexes = list(), list()
|
302 |
-
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
|
303 |
-
packed_key_value_indexes = list()
|
304 |
-
|
305 |
-
_curr = curr = 0
|
306 |
-
newlens, new_rope = list(), list()
|
307 |
-
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
|
308 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
309 |
-
curr += curr_kvlen
|
310 |
-
|
311 |
-
packed_text_ids.append(new_token_ids['start_of_image'])
|
312 |
-
packed_text_indexes.append(_curr)
|
313 |
-
packed_indexes.append(curr)
|
314 |
-
curr += 1
|
315 |
-
_curr += 1
|
316 |
-
|
317 |
-
image_tensor = transforms(image)
|
318 |
-
vit_position_ids = self.get_flattened_position_ids(
|
319 |
-
image_tensor.size(1), image_tensor.size(2),
|
320 |
-
self.vit_patch_size,
|
321 |
-
max_num_patches_per_side=self.vit_max_num_patch_per_side
|
322 |
-
)
|
323 |
-
vit_tokens = patchify(image_tensor, self.vit_patch_size)
|
324 |
-
packed_vit_tokens.append(vit_tokens)
|
325 |
-
num_img_tokens = vit_tokens.shape[0]
|
326 |
-
packed_vit_position_ids.append(vit_position_ids)
|
327 |
-
vit_token_seqlens.append(num_img_tokens)
|
328 |
-
packed_vit_token_indexes.extend(range(_curr, _curr + num_img_tokens))
|
329 |
-
packed_indexes.extend(range(curr, curr + num_img_tokens))
|
330 |
-
curr += num_img_tokens
|
331 |
-
_curr += num_img_tokens
|
332 |
-
|
333 |
-
packed_text_ids.append(new_token_ids['end_of_image'])
|
334 |
-
packed_text_indexes.append(_curr)
|
335 |
-
packed_indexes.append(curr)
|
336 |
-
curr += 1
|
337 |
-
_curr += 1
|
338 |
-
|
339 |
-
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
|
340 |
-
packed_seqlens.append(num_img_tokens + 2)
|
341 |
-
newlens.append(curr_kvlen + num_img_tokens + 2)
|
342 |
-
new_rope.append(curr_position_id + 1)
|
343 |
-
|
344 |
-
generation_input = {
|
345 |
-
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
346 |
-
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
347 |
-
"vit_token_seqlens": torch.tensor(vit_token_seqlens, dtype=torch.int),
|
348 |
-
"packed_vit_tokens": torch.cat(packed_vit_tokens, dim=0),
|
349 |
-
"packed_vit_position_ids": torch.cat(packed_vit_position_ids, dim=0),
|
350 |
-
"packed_vit_token_indexes": torch.tensor(packed_vit_token_indexes, dtype=torch.long),
|
351 |
-
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
352 |
-
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
353 |
-
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
354 |
-
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
355 |
-
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
356 |
-
}
|
357 |
-
|
358 |
-
return generation_input, newlens, new_rope
|
359 |
-
|
360 |
-
@torch.no_grad
|
361 |
-
def forward_cache_update_vit(
|
362 |
-
self,
|
363 |
-
past_key_values: NaiveCache,
|
364 |
-
packed_text_ids: torch.LongTensor,
|
365 |
-
packed_text_indexes: torch.LongTensor,
|
366 |
-
packed_vit_tokens: torch.Tensor,
|
367 |
-
packed_vit_token_indexes: torch.LongTensor,
|
368 |
-
packed_vit_position_ids: torch.LongTensor,
|
369 |
-
vit_token_seqlens: torch.IntTensor,
|
370 |
-
packed_position_ids: torch.LongTensor,
|
371 |
-
packed_seqlens: torch.IntTensor,
|
372 |
-
packed_indexes: torch.LongTensor,
|
373 |
-
packed_key_value_indexes: torch.LongTensor,
|
374 |
-
key_values_lens: torch.IntTensor,
|
375 |
-
):
|
376 |
-
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
377 |
-
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
378 |
-
packed_sequence[packed_text_indexes] = packed_text_embedding
|
379 |
-
|
380 |
-
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
|
381 |
-
cu_seqlens = cu_seqlens.to(torch.int32)
|
382 |
-
max_seqlen = torch.max(vit_token_seqlens).item()
|
383 |
-
packed_vit_token_embed = self.vit_model(
|
384 |
-
packed_pixel_values=packed_vit_tokens,
|
385 |
-
packed_flattened_position_ids=packed_vit_position_ids,
|
386 |
-
cu_seqlens=cu_seqlens,
|
387 |
-
max_seqlen=max_seqlen,
|
388 |
-
)
|
389 |
-
packed_vit_token_embed = self.connector(packed_vit_token_embed)
|
390 |
-
pos_emb = self.vit_pos_embed(packed_vit_position_ids)
|
391 |
-
packed_vit_token_embed = packed_vit_token_embed + pos_emb
|
392 |
-
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
|
393 |
-
|
394 |
-
extra_inputs = {}
|
395 |
-
if self.use_moe:
|
396 |
-
extra_inputs = {"mode": "und"}
|
397 |
-
|
398 |
-
output = self.language_model.forward_inference(
|
399 |
-
packed_query_sequence=packed_sequence,
|
400 |
-
query_lens=packed_seqlens,
|
401 |
-
packed_query_position_ids=packed_position_ids,
|
402 |
-
packed_query_indexes=packed_indexes,
|
403 |
-
past_key_values=past_key_values,
|
404 |
-
packed_key_value_indexes=packed_key_value_indexes,
|
405 |
-
key_values_lens=key_values_lens,
|
406 |
-
update_past_key_values=True,
|
407 |
-
is_causal=False,
|
408 |
-
**extra_inputs,
|
409 |
-
)
|
410 |
-
past_key_values = output.past_key_values
|
411 |
-
|
412 |
-
return past_key_values
|
413 |
-
|
414 |
-
def prepare_vae_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids, timestep=0):
|
415 |
-
patchified_vae_latent_shapes, packed_vae_position_ids = list(), list()
|
416 |
-
packed_vae_token_indexes = list()
|
417 |
-
packed_text_ids, packed_text_indexes = list(), list()
|
418 |
-
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
|
419 |
-
packed_key_value_indexes = list()
|
420 |
-
|
421 |
-
_curr = curr = 0
|
422 |
-
vae_image_tensors = list()
|
423 |
-
newlens, new_rope = list(), list()
|
424 |
-
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
|
425 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
426 |
-
curr += curr_kvlen
|
427 |
-
|
428 |
-
packed_text_ids.append(new_token_ids['start_of_image'])
|
429 |
-
packed_text_indexes.append(_curr)
|
430 |
-
packed_indexes.append(curr)
|
431 |
-
curr += 1
|
432 |
-
_curr += 1
|
433 |
-
|
434 |
-
image_tensor = transforms(image)
|
435 |
-
vae_image_tensors.append(image_tensor)
|
436 |
-
vae_posiiton_ids = self.get_flattened_position_ids(
|
437 |
-
image_tensor.size(1), image_tensor.size(2),
|
438 |
-
self.latent_downsample,
|
439 |
-
max_num_patches_per_side=self.max_latent_size
|
440 |
-
)
|
441 |
-
packed_vae_position_ids.append(vae_posiiton_ids)
|
442 |
-
H, W = image_tensor.shape[1:]
|
443 |
-
h = H // self.latent_downsample
|
444 |
-
w = W // self.latent_downsample
|
445 |
-
patchified_vae_latent_shapes.append((h, w))
|
446 |
-
|
447 |
-
num_img_tokens = w * h
|
448 |
-
packed_vae_token_indexes.extend(range(_curr, _curr + num_img_tokens))
|
449 |
-
packed_indexes.extend(range(curr, curr + num_img_tokens))
|
450 |
-
curr += num_img_tokens
|
451 |
-
_curr += num_img_tokens
|
452 |
-
|
453 |
-
packed_text_ids.append(new_token_ids['end_of_image'])
|
454 |
-
packed_text_indexes.append(_curr)
|
455 |
-
packed_indexes.append(curr)
|
456 |
-
curr += 1
|
457 |
-
_curr += 1
|
458 |
-
|
459 |
-
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
|
460 |
-
packed_seqlens.append(num_img_tokens + 2)
|
461 |
-
newlens.append(curr_kvlen + num_img_tokens + 2)
|
462 |
-
new_rope.append(curr_position_id + 1)
|
463 |
-
|
464 |
-
image_sizes = [item.shape for item in vae_image_tensors]
|
465 |
-
max_image_size = [max(item) for item in list(zip(*image_sizes))]
|
466 |
-
padded_images = torch.zeros(size=(len(vae_image_tensors), *max_image_size))
|
467 |
-
for i, image_tensor in enumerate(vae_image_tensors):
|
468 |
-
padded_images[i, :, :image_tensor.shape[1], :image_tensor.shape[2]] = image_tensor
|
469 |
-
|
470 |
-
generation_input = {
|
471 |
-
"padded_images": padded_images,
|
472 |
-
"patchified_vae_latent_shapes": patchified_vae_latent_shapes,
|
473 |
-
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
|
474 |
-
"packed_timesteps": torch.tensor([timestep]),
|
475 |
-
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
|
476 |
-
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
477 |
-
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
478 |
-
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
479 |
-
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
480 |
-
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
481 |
-
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
482 |
-
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
483 |
-
}
|
484 |
-
|
485 |
-
return generation_input, newlens, new_rope
|
486 |
-
|
487 |
-
@torch.no_grad
|
488 |
-
def forward_cache_update_vae(
|
489 |
-
self,
|
490 |
-
vae_model,
|
491 |
-
past_key_values: NaiveCache,
|
492 |
-
padded_images: torch.Tensor,
|
493 |
-
patchified_vae_latent_shapes: List,
|
494 |
-
packed_vae_position_ids: torch.LongTensor,
|
495 |
-
packed_timesteps: torch.Tensor,
|
496 |
-
packed_vae_token_indexes: torch.LongTensor,
|
497 |
-
packed_text_ids: torch.LongTensor,
|
498 |
-
packed_text_indexes: torch.LongTensor,
|
499 |
-
packed_position_ids: torch.LongTensor,
|
500 |
-
packed_seqlens: torch.IntTensor,
|
501 |
-
packed_indexes: torch.LongTensor,
|
502 |
-
key_values_lens: torch.IntTensor,
|
503 |
-
packed_key_value_indexes: torch.Tensor,
|
504 |
-
):
|
505 |
-
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
506 |
-
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
507 |
-
packed_sequence[packed_text_indexes] = packed_text_embedding
|
508 |
-
|
509 |
-
padded_latent = vae_model.encode(padded_images)
|
510 |
-
|
511 |
-
p = self.latent_patch_size
|
512 |
-
packed_latent = list()
|
513 |
-
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
|
514 |
-
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
|
515 |
-
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
|
516 |
-
packed_latent.append(latent)
|
517 |
-
packed_latent = torch.cat(packed_latent, dim=0)
|
518 |
-
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
|
519 |
-
packed_timestep_embeds = self.time_embedder(packed_timesteps)
|
520 |
-
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + packed_pos_embed
|
521 |
-
packed_sequence[packed_vae_token_indexes] = packed_latent
|
522 |
-
|
523 |
-
extra_inputs = {}
|
524 |
-
if self.use_moe:
|
525 |
-
extra_inputs = {
|
526 |
-
"mode": "gen",
|
527 |
-
"packed_vae_token_indexes": packed_vae_token_indexes,
|
528 |
-
"packed_text_indexes": packed_text_indexes
|
529 |
-
}
|
530 |
-
|
531 |
-
output = self.language_model.forward_inference(
|
532 |
-
packed_query_sequence=packed_sequence,
|
533 |
-
query_lens=packed_seqlens,
|
534 |
-
packed_query_position_ids=packed_position_ids,
|
535 |
-
packed_query_indexes=packed_indexes,
|
536 |
-
past_key_values=past_key_values,
|
537 |
-
key_values_lens=key_values_lens,
|
538 |
-
packed_key_value_indexes=packed_key_value_indexes,
|
539 |
-
update_past_key_values=True,
|
540 |
-
is_causal=False,
|
541 |
-
**extra_inputs,
|
542 |
-
)
|
543 |
-
past_key_values = output.past_key_values
|
544 |
-
|
545 |
-
return past_key_values
|
546 |
-
|
547 |
-
def prepare_vae_latent(self, curr_kvlens, curr_rope, image_sizes, new_token_ids):
|
548 |
-
packed_text_ids, packed_text_indexes = list(), list()
|
549 |
-
packed_vae_position_ids, packed_vae_token_indexes, packed_init_noises = list(), list(), list()
|
550 |
-
packed_position_ids, packed_seqlens, packed_indexes = list(), list(), list()
|
551 |
-
packed_key_value_indexes = list()
|
552 |
-
|
553 |
-
query_curr = curr = 0
|
554 |
-
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
|
555 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
556 |
-
curr += curr_kvlen
|
557 |
-
|
558 |
-
packed_text_ids.append(new_token_ids['start_of_image'])
|
559 |
-
packed_text_indexes.append(query_curr)
|
560 |
-
packed_indexes.append(curr)
|
561 |
-
curr += 1
|
562 |
-
query_curr += 1
|
563 |
-
|
564 |
-
vae_posiiton_ids = self.get_flattened_position_ids(
|
565 |
-
H, W,
|
566 |
-
self.latent_downsample,
|
567 |
-
max_num_patches_per_side=self.max_latent_size
|
568 |
-
)
|
569 |
-
packed_vae_position_ids.append(vae_posiiton_ids)
|
570 |
-
|
571 |
-
h, w = H // self.latent_downsample, W // self.latent_downsample
|
572 |
-
num_image_tokens = h * w
|
573 |
-
packed_init_noises.append(
|
574 |
-
torch.randn(num_image_tokens, self.latent_channel * self.latent_patch_size ** 2)
|
575 |
-
)
|
576 |
-
packed_vae_token_indexes.extend(range(query_curr, query_curr + num_image_tokens))
|
577 |
-
packed_indexes.extend(range(curr, curr + num_image_tokens))
|
578 |
-
curr += num_image_tokens
|
579 |
-
query_curr += num_image_tokens
|
580 |
-
|
581 |
-
packed_text_ids.append(new_token_ids['end_of_image'])
|
582 |
-
packed_text_indexes.append(query_curr)
|
583 |
-
packed_indexes.append(curr)
|
584 |
-
curr += 1
|
585 |
-
query_curr += 1
|
586 |
-
|
587 |
-
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
|
588 |
-
packed_seqlens.append(num_image_tokens + 2)
|
589 |
-
|
590 |
-
generation_input = {
|
591 |
-
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
592 |
-
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
593 |
-
"packed_init_noises": torch.cat(packed_init_noises, dim=0),
|
594 |
-
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
|
595 |
-
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
|
596 |
-
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
597 |
-
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
598 |
-
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
599 |
-
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
600 |
-
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
601 |
-
}
|
602 |
-
|
603 |
-
return generation_input
|
604 |
-
|
605 |
-
def prepare_vae_latent_cfg(self, curr_kvlens, curr_rope, image_sizes):
|
606 |
-
packed_position_ids, packed_indexes, packed_key_value_indexes = list(), list(), list()
|
607 |
-
|
608 |
-
query_curr = curr = 0
|
609 |
-
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
|
610 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
611 |
-
curr += curr_kvlen
|
612 |
-
|
613 |
-
packed_indexes.append(curr)
|
614 |
-
curr += 1
|
615 |
-
query_curr += 1
|
616 |
-
|
617 |
-
h, w = H // self.latent_downsample, W // self.latent_downsample
|
618 |
-
num_image_tokens = h * w
|
619 |
-
packed_indexes.extend(range(curr, curr + num_image_tokens))
|
620 |
-
curr += num_image_tokens
|
621 |
-
query_curr += num_image_tokens
|
622 |
-
|
623 |
-
packed_indexes.append(curr)
|
624 |
-
curr += 1
|
625 |
-
query_curr += 1
|
626 |
-
|
627 |
-
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
|
628 |
-
|
629 |
-
generation_input = {
|
630 |
-
"cfg_packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
631 |
-
"cfg_key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
632 |
-
"cfg_packed_query_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
633 |
-
"cfg_packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
634 |
-
}
|
635 |
-
|
636 |
-
return generation_input
|
637 |
-
|
638 |
-
@torch.no_grad
|
639 |
-
def generate_image(
|
640 |
-
self,
|
641 |
-
packed_text_ids: torch.LongTensor,
|
642 |
-
packed_text_indexes: torch.LongTensor,
|
643 |
-
packed_init_noises: torch.Tensor,
|
644 |
-
packed_vae_position_ids: torch.LongTensor,
|
645 |
-
packed_vae_token_indexes: torch.LongTensor,
|
646 |
-
packed_seqlens: torch.IntTensor,
|
647 |
-
packed_position_ids: torch.LongTensor,
|
648 |
-
packed_indexes: torch.LongTensor,
|
649 |
-
past_key_values: NaiveCache,
|
650 |
-
key_values_lens: torch.IntTensor,
|
651 |
-
packed_key_value_indexes: torch.LongTensor,
|
652 |
-
num_timesteps: int = 24,
|
653 |
-
timestep_shift: float = 1.0,
|
654 |
-
cfg_renorm_min: float = 0.0,
|
655 |
-
cfg_renorm_type: str = "global",
|
656 |
-
cfg_interval: Optional[Tuple[float, float]] = [0, 1],
|
657 |
-
# cfg_text
|
658 |
-
cfg_text_scale: float = 1.0,
|
659 |
-
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
|
660 |
-
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
|
661 |
-
cfg_text_past_key_values: Optional[NaiveCache] = None,
|
662 |
-
cfg_text_key_values_lens: Optional[torch.IntTensor] = None,
|
663 |
-
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
664 |
-
# cfg_img
|
665 |
-
cfg_img_scale: float = 1.0,
|
666 |
-
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
|
667 |
-
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
|
668 |
-
cfg_img_past_key_values: Optional[NaiveCache] = None,
|
669 |
-
cfg_img_key_values_lens: Optional[torch.IntTensor] = None,
|
670 |
-
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
671 |
-
cfg_type: str = "parallel",
|
672 |
-
):
|
673 |
-
x_t = packed_init_noises
|
674 |
-
|
675 |
-
timesteps = torch.linspace(1, 0, num_timesteps, device=x_t.device)
|
676 |
-
timesteps = timestep_shift * timesteps / (1 + (timestep_shift - 1) * timesteps)
|
677 |
-
dts = timesteps[:-1] - timesteps[1:]
|
678 |
-
timesteps = timesteps[:-1]
|
679 |
-
|
680 |
-
for i, t in enumerate(timesteps):
|
681 |
-
|
682 |
-
timestep = torch.tensor([t] * x_t.shape[0], device=x_t.device)
|
683 |
-
if t > cfg_interval[0] and t <= cfg_interval[1]:
|
684 |
-
cfg_text_scale_ = cfg_text_scale
|
685 |
-
cfg_img_scale_ = cfg_img_scale
|
686 |
-
else:
|
687 |
-
cfg_text_scale_ = 1.0
|
688 |
-
cfg_img_scale_ = 1.0
|
689 |
-
v_t = self._forward_flow(
|
690 |
-
x_t=x_t,
|
691 |
-
timestep=timestep,
|
692 |
-
packed_vae_token_indexes=packed_vae_token_indexes,
|
693 |
-
packed_vae_position_ids=packed_vae_position_ids,
|
694 |
-
packed_text_ids=packed_text_ids,
|
695 |
-
packed_text_indexes=packed_text_indexes,
|
696 |
-
packed_position_ids=packed_position_ids,
|
697 |
-
packed_indexes=packed_indexes,
|
698 |
-
packed_seqlens=packed_seqlens,
|
699 |
-
key_values_lens=key_values_lens,
|
700 |
-
past_key_values=past_key_values,
|
701 |
-
packed_key_value_indexes=packed_key_value_indexes,
|
702 |
-
cfg_renorm_min=cfg_renorm_min,
|
703 |
-
cfg_renorm_type=cfg_renorm_type,
|
704 |
-
# cfg_text
|
705 |
-
cfg_text_scale=cfg_text_scale_,
|
706 |
-
cfg_text_packed_position_ids=cfg_text_packed_position_ids,
|
707 |
-
cfg_text_packed_query_indexes=cfg_text_packed_query_indexes,
|
708 |
-
cfg_text_key_values_lens=cfg_text_key_values_lens,
|
709 |
-
cfg_text_past_key_values=cfg_text_past_key_values,
|
710 |
-
cfg_text_packed_key_value_indexes=cfg_text_packed_key_value_indexes,
|
711 |
-
# cfg_img
|
712 |
-
cfg_img_scale=cfg_img_scale_,
|
713 |
-
cfg_img_packed_position_ids=cfg_img_packed_position_ids,
|
714 |
-
cfg_img_packed_query_indexes=cfg_img_packed_query_indexes,
|
715 |
-
cfg_img_key_values_lens=cfg_img_key_values_lens,
|
716 |
-
cfg_img_past_key_values=cfg_img_past_key_values,
|
717 |
-
cfg_img_packed_key_value_indexes=cfg_img_packed_key_value_indexes,
|
718 |
-
cfg_type=cfg_type,
|
719 |
-
)
|
720 |
-
|
721 |
-
x_t = x_t - v_t.to(x_t.device) * dts[i] # velocity pointing from data to noise
|
722 |
-
|
723 |
-
unpacked_latent = x_t.split((packed_seqlens - 2).tolist())
|
724 |
-
return unpacked_latent
|
725 |
-
|
726 |
-
@torch.no_grad
|
727 |
-
def _forward_flow(
|
728 |
-
self,
|
729 |
-
x_t: torch.Tensor,
|
730 |
-
timestep: torch.LongTensor,
|
731 |
-
packed_vae_token_indexes: torch.LongTensor,
|
732 |
-
packed_vae_position_ids: torch.LongTensor,
|
733 |
-
packed_text_ids: torch.LongTensor,
|
734 |
-
packed_text_indexes: torch.LongTensor,
|
735 |
-
packed_indexes: torch.LongTensor,
|
736 |
-
packed_position_ids: torch.LongTensor,
|
737 |
-
packed_seqlens: torch.IntTensor,
|
738 |
-
key_values_lens: torch.IntTensor,
|
739 |
-
past_key_values: NaiveCache,
|
740 |
-
packed_key_value_indexes: torch.LongTensor,
|
741 |
-
cfg_renorm_min: float = 0.0,
|
742 |
-
cfg_renorm_type: str = "global",
|
743 |
-
# cfg_text
|
744 |
-
cfg_text_scale: float = 1.0,
|
745 |
-
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
|
746 |
-
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
|
747 |
-
cfg_text_key_values_lens: Optional[torch.Tensor] = None,
|
748 |
-
cfg_text_past_key_values: Optional[NaiveCache] = None,
|
749 |
-
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
750 |
-
# cfg_img
|
751 |
-
cfg_img_scale: float = 1.0,
|
752 |
-
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
|
753 |
-
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
|
754 |
-
cfg_img_key_values_lens: Optional[torch.Tensor] = None,
|
755 |
-
cfg_img_past_key_values: Optional[NaiveCache] = None,
|
756 |
-
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
757 |
-
cfg_type: str = "parallel",
|
758 |
-
):
|
759 |
-
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
760 |
-
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
761 |
-
packed_sequence[packed_text_indexes] = packed_text_embedding
|
762 |
-
|
763 |
-
assert timestep.unique().shape[0] == 1
|
764 |
-
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
|
765 |
-
packed_timestep_embeds = self.time_embedder(timestep)
|
766 |
-
x_t = self.vae2llm(x_t) + packed_timestep_embeds + packed_pos_embed
|
767 |
-
packed_sequence[packed_vae_token_indexes] = x_t
|
768 |
-
|
769 |
-
extra_inputs = {}
|
770 |
-
if self.use_moe:
|
771 |
-
extra_inputs = {
|
772 |
-
"mode": "gen",
|
773 |
-
"packed_vae_token_indexes": packed_vae_token_indexes,
|
774 |
-
"packed_text_indexes": packed_text_indexes
|
775 |
-
}
|
776 |
-
|
777 |
-
output = self.language_model.forward_inference(
|
778 |
-
packed_query_sequence=packed_sequence,
|
779 |
-
query_lens=packed_seqlens,
|
780 |
-
packed_query_position_ids=packed_position_ids,
|
781 |
-
packed_query_indexes=packed_indexes,
|
782 |
-
past_key_values=past_key_values,
|
783 |
-
key_values_lens=key_values_lens,
|
784 |
-
packed_key_value_indexes=packed_key_value_indexes,
|
785 |
-
update_past_key_values=False,
|
786 |
-
is_causal=False,
|
787 |
-
**extra_inputs,
|
788 |
-
)
|
789 |
-
v_t = self.llm2vae(output.packed_query_sequence)
|
790 |
-
v_t = v_t[packed_vae_token_indexes]
|
791 |
-
|
792 |
-
if cfg_text_scale > 1.0:
|
793 |
-
cfg_text_output = self.language_model.forward_inference(
|
794 |
-
packed_query_sequence=packed_sequence,
|
795 |
-
query_lens=packed_seqlens,
|
796 |
-
packed_query_position_ids=cfg_text_packed_position_ids,
|
797 |
-
packed_query_indexes=cfg_text_packed_query_indexes,
|
798 |
-
past_key_values=cfg_text_past_key_values,
|
799 |
-
key_values_lens=cfg_text_key_values_lens,
|
800 |
-
packed_key_value_indexes=cfg_text_packed_key_value_indexes,
|
801 |
-
update_past_key_values=False,
|
802 |
-
is_causal=False,
|
803 |
-
**extra_inputs,
|
804 |
-
)
|
805 |
-
cfg_text_v_t = self.llm2vae(cfg_text_output.packed_query_sequence)
|
806 |
-
cfg_text_v_t = cfg_text_v_t[packed_vae_token_indexes]
|
807 |
-
|
808 |
-
if cfg_img_scale > 1.0:
|
809 |
-
cfg_img_output = self.language_model.forward_inference(
|
810 |
-
packed_query_sequence=packed_sequence,
|
811 |
-
query_lens=packed_seqlens,
|
812 |
-
packed_query_position_ids=cfg_img_packed_position_ids,
|
813 |
-
packed_query_indexes=cfg_img_packed_query_indexes,
|
814 |
-
past_key_values=cfg_img_past_key_values,
|
815 |
-
key_values_lens=cfg_img_key_values_lens,
|
816 |
-
packed_key_value_indexes=cfg_img_packed_key_value_indexes,
|
817 |
-
update_past_key_values=False,
|
818 |
-
is_causal=False,
|
819 |
-
**extra_inputs,
|
820 |
-
)
|
821 |
-
cfg_img_v_t = self.llm2vae(cfg_img_output.packed_query_sequence)
|
822 |
-
cfg_img_v_t = cfg_img_v_t[packed_vae_token_indexes]
|
823 |
-
|
824 |
-
if cfg_text_scale > 1.0:
|
825 |
-
if cfg_renorm_type == "text_channel":
|
826 |
-
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
|
827 |
-
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
|
828 |
-
norm_v_t_text_ = torch.norm(v_t_text_, dim=-1, keepdim=True)
|
829 |
-
scale = (norm_v_t / (norm_v_t_text_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
|
830 |
-
v_t_text = v_t_text_ * scale
|
831 |
-
if cfg_img_scale > 1.0:
|
832 |
-
v_t = cfg_img_v_t + cfg_img_scale * (v_t_text - cfg_img_v_t)
|
833 |
-
else:
|
834 |
-
v_t = v_t_text
|
835 |
-
else:
|
836 |
-
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
|
837 |
-
|
838 |
-
if cfg_img_scale > 1.0:
|
839 |
-
v_t_ = cfg_img_v_t + cfg_img_scale * (v_t_text_ - cfg_img_v_t)
|
840 |
-
else:
|
841 |
-
v_t_ = v_t_text_
|
842 |
-
|
843 |
-
# NOTE norm is computed over all dimensions, thus currently only supports batch_size = 1 with navit
|
844 |
-
if cfg_renorm_type == "global":
|
845 |
-
norm_v_t = torch.norm(v_t)
|
846 |
-
norm_v_t_ = torch.norm(v_t_)
|
847 |
-
elif cfg_renorm_type == "channel":
|
848 |
-
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
|
849 |
-
norm_v_t_ = torch.norm(v_t_, dim=-1, keepdim=True)
|
850 |
-
else:
|
851 |
-
raise NotImplementedError(f"{cfg_renorm_type} is not suppoprted")
|
852 |
-
scale = (norm_v_t / (norm_v_t_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
|
853 |
-
v_t = v_t_ * scale
|
854 |
-
else:
|
855 |
-
# No CFG
|
856 |
-
pass
|
857 |
-
|
858 |
-
return v_t
|
859 |
-
|
860 |
-
def prepare_start_tokens(self, curr_kvlens, curr_rope, new_token_ids):
|
861 |
-
packed_start_tokens, packed_key_value_indexes = list(), list()
|
862 |
-
packed_query_position_ids = list()
|
863 |
-
|
864 |
-
curr = 0
|
865 |
-
for curr_kvlen, curr_position_id in zip(curr_kvlens, curr_rope):
|
866 |
-
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
867 |
-
packed_start_tokens.append(new_token_ids['bos_token_id'])
|
868 |
-
packed_query_position_ids.append(curr_position_id)
|
869 |
-
curr += curr_kvlen
|
870 |
-
|
871 |
-
generation_input = {
|
872 |
-
"packed_start_tokens": torch.tensor(packed_start_tokens, dtype=torch.long),
|
873 |
-
"packed_query_position_ids": torch.tensor(packed_query_position_ids, dtype=torch.long),
|
874 |
-
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
875 |
-
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
876 |
-
}
|
877 |
-
|
878 |
-
return generation_input
|
879 |
-
|
880 |
-
@torch.no_grad
|
881 |
-
def generate_text(
|
882 |
-
self,
|
883 |
-
past_key_values: NaiveCache,
|
884 |
-
packed_key_value_indexes: torch.LongTensor,
|
885 |
-
key_values_lens: torch.IntTensor,
|
886 |
-
packed_start_tokens: torch.LongTensor,
|
887 |
-
packed_query_position_ids: torch.LongTensor,
|
888 |
-
max_length: int,
|
889 |
-
do_sample: bool = False,
|
890 |
-
temperature: float = 1.0,
|
891 |
-
end_token_id: int = None,
|
892 |
-
):
|
893 |
-
step = 0
|
894 |
-
generated_sequence = []
|
895 |
-
curr_tokens = packed_start_tokens
|
896 |
-
while step < max_length:
|
897 |
-
generated_sequence.append(curr_tokens)
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
|
935 |
-
curr_tokens = torch.
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
-
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
|
992 |
-
|
993 |
-
|
994 |
-
|
995 |
-
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
-
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
1018 |
-
|
1019 |
-
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
|
1025 |
-
|
1026 |
-
|
|
|
1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
import copy
|
5 |
+
from typing import List, Tuple, Optional
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn.attention.flex_attention import create_block_mask
|
13 |
+
from transformers.configuration_utils import PretrainedConfig
|
14 |
+
from transformers.modeling_utils import PreTrainedModel
|
15 |
+
|
16 |
+
from data.data_utils import (
|
17 |
+
create_sparse_mask,
|
18 |
+
get_flattened_position_ids_extrapolate,
|
19 |
+
get_flattened_position_ids_interpolate,
|
20 |
+
patchify,
|
21 |
+
)
|
22 |
+
from .qwen2_navit import NaiveCache
|
23 |
+
from .modeling_utils import MLPconnector, TimestepEmbedder, PositionEmbedding
|
24 |
+
|
25 |
+
|
26 |
+
class BagelConfig(PretrainedConfig):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
visual_gen=True,
|
30 |
+
visual_und=True,
|
31 |
+
llm_config=None,
|
32 |
+
vit_config=None,
|
33 |
+
vae_config=None,
|
34 |
+
latent_patch_size=2,
|
35 |
+
max_latent_size=32,
|
36 |
+
vit_max_num_patch_per_side=70,
|
37 |
+
connector_act="gelu_pytorch_tanh",
|
38 |
+
interpolate_pos=False,
|
39 |
+
timestep_shift=1.0,
|
40 |
+
**kwargs
|
41 |
+
):
|
42 |
+
super().__init__(**kwargs)
|
43 |
+
self.visual_gen = visual_gen
|
44 |
+
self.visual_und = visual_und
|
45 |
+
self.llm_config = llm_config
|
46 |
+
self.vit_config = vit_config
|
47 |
+
self.vae_config = vae_config
|
48 |
+
self.latent_patch_size = latent_patch_size
|
49 |
+
self.max_latent_size = max_latent_size
|
50 |
+
self.vit_max_num_patch_per_side = vit_max_num_patch_per_side
|
51 |
+
self.connector_act = connector_act
|
52 |
+
self.interpolate_pos = interpolate_pos
|
53 |
+
self.timestep_shift = timestep_shift
|
54 |
+
|
55 |
+
|
56 |
+
class Bagel(PreTrainedModel):
|
57 |
+
config_class = BagelConfig
|
58 |
+
base_model_prefix = 'bagel'
|
59 |
+
|
60 |
+
def __init__(self, language_model, vit_model, config: BagelConfig):
|
61 |
+
super().__init__(config)
|
62 |
+
self.language_model = language_model
|
63 |
+
self.hidden_size = config.llm_config.hidden_size
|
64 |
+
self.use_moe = "Mo" in config.llm_config.layer_module
|
65 |
+
self.num_heads = config.llm_config.num_attention_heads
|
66 |
+
|
67 |
+
if config.visual_gen:
|
68 |
+
self.latent_patch_size = config.latent_patch_size
|
69 |
+
self.timestep_shift = config.timestep_shift
|
70 |
+
self.latent_downsample = config.vae_config.downsample * config.latent_patch_size
|
71 |
+
self.max_latent_size = config.max_latent_size
|
72 |
+
self.latent_channel = config.vae_config.z_channels
|
73 |
+
self.patch_latent_dim = self.latent_patch_size ** 2 * self.latent_channel
|
74 |
+
self.time_embedder = TimestepEmbedder(self.hidden_size)
|
75 |
+
self.vae2llm = nn.Linear(self.patch_latent_dim, self.hidden_size)
|
76 |
+
self.llm2vae = nn.Linear(self.hidden_size, self.patch_latent_dim)
|
77 |
+
self.latent_pos_embed = PositionEmbedding(self.max_latent_size, self.hidden_size)
|
78 |
+
|
79 |
+
if config.visual_und:
|
80 |
+
self.vit_model = vit_model
|
81 |
+
self.vit_patch_size = config.vit_config.patch_size
|
82 |
+
self.vit_max_num_patch_per_side = config.vit_max_num_patch_per_side
|
83 |
+
self.vit_hidden_size = config.vit_config.hidden_size
|
84 |
+
self.connector = MLPconnector(self.vit_hidden_size, self.hidden_size, config.connector_act)
|
85 |
+
self.vit_pos_embed = PositionEmbedding(self.vit_max_num_patch_per_side, self.hidden_size)
|
86 |
+
|
87 |
+
if config.interpolate_pos:
|
88 |
+
self.get_flattened_position_ids = get_flattened_position_ids_interpolate
|
89 |
+
else:
|
90 |
+
self.get_flattened_position_ids = get_flattened_position_ids_extrapolate
|
91 |
+
|
92 |
+
self.config = config
|
93 |
+
self._init_weights()
|
94 |
+
|
95 |
+
def _init_weights(self):
|
96 |
+
if self.config.visual_gen:
|
97 |
+
nn.init.constant_(self.llm2vae.weight, 0)
|
98 |
+
nn.init.constant_(self.llm2vae.bias, 0)
|
99 |
+
|
100 |
+
def forward(
|
101 |
+
self,
|
102 |
+
sequence_length: int,
|
103 |
+
packed_text_ids: torch.LongTensor,
|
104 |
+
packed_text_indexes: torch.LongTensor,
|
105 |
+
sample_lens: List[int],
|
106 |
+
packed_position_ids: torch.LongTensor,
|
107 |
+
nested_attention_masks: List[torch.Tensor] = None,
|
108 |
+
split_lens: List[int] = None,
|
109 |
+
attn_modes: List[str] = None,
|
110 |
+
# for visual understanding
|
111 |
+
ce_loss_indexes: Optional[torch.BoolTensor] = None,
|
112 |
+
packed_label_ids: Optional[torch.LongTensor] = None,
|
113 |
+
packed_vit_tokens: Optional[torch.Tensor] = None,
|
114 |
+
packed_vit_token_indexes: Optional[torch.LongTensor] = None,
|
115 |
+
packed_vit_position_ids: Optional[torch.LongTensor] = None,
|
116 |
+
vit_token_seqlens: Optional[torch.IntTensor] = None,
|
117 |
+
# for visual generation
|
118 |
+
padded_latent: Optional[torch.Tensor] = None,
|
119 |
+
patchified_vae_latent_shapes: Optional[List[Tuple[int, int]]] = None,
|
120 |
+
packed_latent_position_ids: Optional[torch.LongTensor] = None,
|
121 |
+
packed_vae_token_indexes: Optional[torch.LongTensor] = None,
|
122 |
+
packed_timesteps: Optional[torch.LongTensor] = None,
|
123 |
+
mse_loss_indexes: Optional[torch.BoolTensor] = None,
|
124 |
+
) -> torch.Tensor:
|
125 |
+
"""
|
126 |
+
Args:
|
127 |
+
sequence_length: length of sequence.
|
128 |
+
packed_text_ids: 1-D int tensor, packed text token ids.
|
129 |
+
packed_text_indexes: 1-D int tensor, packed text token indexes in sequence.
|
130 |
+
sample_lens: A list of N ints, length of each sample in packed_sequence.
|
131 |
+
nested_attention_masks: A list of N 2-D float tensor, where 0.0 means attention and
|
132 |
+
-inf means ignore.
|
133 |
+
packed_position_ids: packed 1-D positions, an image has only one global position shared
|
134 |
+
by all latent tokens.
|
135 |
+
|
136 |
+
packed_vit_tokens: packed patchified image tokens for vit model.
|
137 |
+
packed_vit_position_ids: 1-D int tensor, the position of each token for vit model.
|
138 |
+
packed_vit_token_indexes: 1-D int tensor, packed vit token indexes in sequence.
|
139 |
+
vit_token_seqlens: 1-D int tensor, the length of each image tokens for vit model.
|
140 |
+
packed_label_ids: 1-D int tensor, packed label token ids.
|
141 |
+
ce_loss_indexes: 1-D bool tensor, where to compute ce loss.
|
142 |
+
|
143 |
+
padded_latent: padded latent from VAE encoder.
|
144 |
+
patchified_vae_latent_shapes: A list of (h, w) tuples, patchfied latent shapes of each image.
|
145 |
+
packed_latent_position_ids: 1-D int tensor, the position of each token for latent.
|
146 |
+
packed_vae_token_indexes: 1-D int tensor, padded image token indexes in sequence.
|
147 |
+
packed_timesteps: 1-D float tensor, flow timesteps. 0 indicates use clean image.
|
148 |
+
mse_loss_indexes: 1-D bool tensor, where to compute mse loss.
|
149 |
+
"""
|
150 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
151 |
+
packed_sequence = packed_text_embedding.new_zeros(size=(sequence_length, self.hidden_size))
|
152 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
153 |
+
|
154 |
+
if nested_attention_masks is None:
|
155 |
+
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
|
156 |
+
seqlen = sum(sample_lens)
|
157 |
+
block_mask = create_block_mask(
|
158 |
+
sparse_mask, B=1, H=self.num_heads, Q_LEN=seqlen, KV_LEN=seqlen,
|
159 |
+
device=packed_text_embedding.device, BLOCK_SIZE=128, _compile=True
|
160 |
+
)
|
161 |
+
attention_mask = block_mask
|
162 |
+
else:
|
163 |
+
attention_mask = nested_attention_masks
|
164 |
+
|
165 |
+
if self.config.visual_und:
|
166 |
+
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
|
167 |
+
cu_seqlens = cu_seqlens.to(torch.int32)
|
168 |
+
max_seqlen = torch.max(vit_token_seqlens).item()
|
169 |
+
packed_vit_token_embed = self.vit_model(
|
170 |
+
packed_pixel_values=packed_vit_tokens,
|
171 |
+
packed_flattened_position_ids=packed_vit_position_ids,
|
172 |
+
cu_seqlens=cu_seqlens,
|
173 |
+
max_seqlen=max_seqlen,
|
174 |
+
)
|
175 |
+
packed_vit_token_embed = self.connector(packed_vit_token_embed)
|
176 |
+
vit_token_pos_emb = self.vit_pos_embed(packed_vit_position_ids)
|
177 |
+
packed_vit_token_embed = packed_vit_token_embed + vit_token_pos_emb
|
178 |
+
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
|
179 |
+
|
180 |
+
if self.config.visual_gen:
|
181 |
+
p = self.latent_patch_size
|
182 |
+
packed_latent = []
|
183 |
+
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
|
184 |
+
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
|
185 |
+
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
|
186 |
+
packed_latent.append(latent)
|
187 |
+
packed_latent_clean = torch.cat(packed_latent, dim=0)
|
188 |
+
|
189 |
+
noise = torch.randn_like(packed_latent_clean)
|
190 |
+
packed_timesteps = torch.sigmoid(packed_timesteps)
|
191 |
+
packed_timesteps = self.timestep_shift * packed_timesteps / (1 + (self.timestep_shift - 1) * packed_timesteps)
|
192 |
+
packed_latent = (1 - packed_timesteps[:, None]) * packed_latent_clean + packed_timesteps[:, None] * noise
|
193 |
+
packed_timestep_embeds = self.time_embedder(packed_timesteps)
|
194 |
+
latent_token_pos_emb = self.latent_pos_embed(packed_latent_position_ids)
|
195 |
+
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + latent_token_pos_emb
|
196 |
+
packed_sequence[packed_vae_token_indexes] = packed_latent
|
197 |
+
|
198 |
+
extra_inputs = {}
|
199 |
+
if self.use_moe:
|
200 |
+
packed_und_token_indexes = packed_text_indexes
|
201 |
+
if packed_vit_token_indexes is not None:
|
202 |
+
packed_und_token_indexes=torch.cat([packed_text_indexes, packed_vit_token_indexes], dim=0)
|
203 |
+
extra_inputs.update(
|
204 |
+
packed_und_token_indexes=packed_und_token_indexes,
|
205 |
+
packed_gen_token_indexes=packed_vae_token_indexes,
|
206 |
+
)
|
207 |
+
|
208 |
+
last_hidden_state = self.language_model(
|
209 |
+
packed_sequence=packed_sequence,
|
210 |
+
sample_lens=sample_lens,
|
211 |
+
attention_mask=attention_mask,
|
212 |
+
packed_position_ids=packed_position_ids,
|
213 |
+
**extra_inputs,
|
214 |
+
)
|
215 |
+
|
216 |
+
mse = None
|
217 |
+
if self.config.visual_gen:
|
218 |
+
packed_mse_preds = self.llm2vae(last_hidden_state[mse_loss_indexes])
|
219 |
+
target = noise - packed_latent_clean # NOTE: v_t=dx_t/dt=x_1-x_0, pointing from data to noise
|
220 |
+
has_mse = packed_timesteps > 0
|
221 |
+
mse = (packed_mse_preds - target[has_mse]) ** 2
|
222 |
+
|
223 |
+
ce = None
|
224 |
+
if ce_loss_indexes is not None:
|
225 |
+
packed_ce_preds = self.language_model.lm_head(last_hidden_state[ce_loss_indexes])
|
226 |
+
ce = F.cross_entropy(packed_ce_preds, packed_label_ids, reduction="none")
|
227 |
+
|
228 |
+
return dict(mse=mse, ce=ce)
|
229 |
+
|
230 |
+
|
231 |
+
def prepare_prompts(self, curr_kvlens, curr_rope, prompts, tokenizer, new_token_ids):
|
232 |
+
packed_text_ids = list()
|
233 |
+
packed_text_position_ids = list()
|
234 |
+
text_token_lens = list()
|
235 |
+
packed_text_indexes = list()
|
236 |
+
packed_key_value_indexes = list()
|
237 |
+
|
238 |
+
curr = 0
|
239 |
+
newlens, new_rope = list(), list()
|
240 |
+
for prompt, curr_kvlen, curr_position_id in zip(prompts, curr_kvlens, curr_rope):
|
241 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
242 |
+
curr += curr_kvlen
|
243 |
+
|
244 |
+
text_ids = tokenizer.encode(prompt)
|
245 |
+
text_ids = [new_token_ids['bos_token_id']] + text_ids + [new_token_ids['eos_token_id']]
|
246 |
+
text_token_lens.append(len(text_ids))
|
247 |
+
packed_text_ids.extend(text_ids)
|
248 |
+
packed_text_position_ids.extend(range(curr_position_id, curr_position_id + len(text_ids)))
|
249 |
+
packed_text_indexes.extend(range(curr, curr + len(text_ids)))
|
250 |
+
newlens.append(curr_kvlen + len(text_ids))
|
251 |
+
new_rope.append(curr_position_id + len(text_ids))
|
252 |
+
curr += len(text_ids)
|
253 |
+
|
254 |
+
generation_input = {
|
255 |
+
"text_token_lens": torch.tensor(text_token_lens, dtype=torch.int),
|
256 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
257 |
+
"packed_text_position_ids": torch.tensor(packed_text_position_ids, dtype=torch.long),
|
258 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
259 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
260 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
261 |
+
}
|
262 |
+
|
263 |
+
return generation_input, newlens, new_rope
|
264 |
+
|
265 |
+
@torch.no_grad
|
266 |
+
def forward_cache_update_text(
|
267 |
+
self,
|
268 |
+
past_key_values: NaiveCache,
|
269 |
+
packed_text_ids: torch.IntTensor,
|
270 |
+
packed_text_position_ids: torch.LongTensor,
|
271 |
+
text_token_lens: torch.LongTensor,
|
272 |
+
packed_text_indexes: torch.LongTensor,
|
273 |
+
packed_key_value_indexes: torch.LongTensor,
|
274 |
+
key_values_lens: torch.IntTensor,
|
275 |
+
):
|
276 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
277 |
+
|
278 |
+
extra_inputs = {}
|
279 |
+
if self.use_moe:
|
280 |
+
extra_inputs = {"mode": "und"}
|
281 |
+
|
282 |
+
output = self.language_model.forward_inference(
|
283 |
+
packed_query_sequence=packed_text_embedding,
|
284 |
+
query_lens=text_token_lens,
|
285 |
+
packed_query_position_ids=packed_text_position_ids,
|
286 |
+
packed_query_indexes=packed_text_indexes,
|
287 |
+
past_key_values=past_key_values,
|
288 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
289 |
+
key_values_lens=key_values_lens,
|
290 |
+
update_past_key_values=True,
|
291 |
+
is_causal=True,
|
292 |
+
**extra_inputs,
|
293 |
+
)
|
294 |
+
past_key_values = output.past_key_values
|
295 |
+
|
296 |
+
return past_key_values
|
297 |
+
|
298 |
+
def prepare_vit_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids):
|
299 |
+
packed_vit_token_indexes = list()
|
300 |
+
vit_token_seqlens, packed_vit_tokens, packed_vit_position_ids = list(), list(), list()
|
301 |
+
packed_text_ids, packed_text_indexes = list(), list()
|
302 |
+
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
|
303 |
+
packed_key_value_indexes = list()
|
304 |
+
|
305 |
+
_curr = curr = 0
|
306 |
+
newlens, new_rope = list(), list()
|
307 |
+
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
|
308 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
309 |
+
curr += curr_kvlen
|
310 |
+
|
311 |
+
packed_text_ids.append(new_token_ids['start_of_image'])
|
312 |
+
packed_text_indexes.append(_curr)
|
313 |
+
packed_indexes.append(curr)
|
314 |
+
curr += 1
|
315 |
+
_curr += 1
|
316 |
+
|
317 |
+
image_tensor = transforms(image)
|
318 |
+
vit_position_ids = self.get_flattened_position_ids(
|
319 |
+
image_tensor.size(1), image_tensor.size(2),
|
320 |
+
self.vit_patch_size,
|
321 |
+
max_num_patches_per_side=self.vit_max_num_patch_per_side
|
322 |
+
)
|
323 |
+
vit_tokens = patchify(image_tensor, self.vit_patch_size)
|
324 |
+
packed_vit_tokens.append(vit_tokens)
|
325 |
+
num_img_tokens = vit_tokens.shape[0]
|
326 |
+
packed_vit_position_ids.append(vit_position_ids)
|
327 |
+
vit_token_seqlens.append(num_img_tokens)
|
328 |
+
packed_vit_token_indexes.extend(range(_curr, _curr + num_img_tokens))
|
329 |
+
packed_indexes.extend(range(curr, curr + num_img_tokens))
|
330 |
+
curr += num_img_tokens
|
331 |
+
_curr += num_img_tokens
|
332 |
+
|
333 |
+
packed_text_ids.append(new_token_ids['end_of_image'])
|
334 |
+
packed_text_indexes.append(_curr)
|
335 |
+
packed_indexes.append(curr)
|
336 |
+
curr += 1
|
337 |
+
_curr += 1
|
338 |
+
|
339 |
+
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
|
340 |
+
packed_seqlens.append(num_img_tokens + 2)
|
341 |
+
newlens.append(curr_kvlen + num_img_tokens + 2)
|
342 |
+
new_rope.append(curr_position_id + 1)
|
343 |
+
|
344 |
+
generation_input = {
|
345 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
346 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
347 |
+
"vit_token_seqlens": torch.tensor(vit_token_seqlens, dtype=torch.int),
|
348 |
+
"packed_vit_tokens": torch.cat(packed_vit_tokens, dim=0),
|
349 |
+
"packed_vit_position_ids": torch.cat(packed_vit_position_ids, dim=0),
|
350 |
+
"packed_vit_token_indexes": torch.tensor(packed_vit_token_indexes, dtype=torch.long),
|
351 |
+
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
352 |
+
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
353 |
+
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
354 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
355 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
356 |
+
}
|
357 |
+
|
358 |
+
return generation_input, newlens, new_rope
|
359 |
+
|
360 |
+
@torch.no_grad
|
361 |
+
def forward_cache_update_vit(
|
362 |
+
self,
|
363 |
+
past_key_values: NaiveCache,
|
364 |
+
packed_text_ids: torch.LongTensor,
|
365 |
+
packed_text_indexes: torch.LongTensor,
|
366 |
+
packed_vit_tokens: torch.Tensor,
|
367 |
+
packed_vit_token_indexes: torch.LongTensor,
|
368 |
+
packed_vit_position_ids: torch.LongTensor,
|
369 |
+
vit_token_seqlens: torch.IntTensor,
|
370 |
+
packed_position_ids: torch.LongTensor,
|
371 |
+
packed_seqlens: torch.IntTensor,
|
372 |
+
packed_indexes: torch.LongTensor,
|
373 |
+
packed_key_value_indexes: torch.LongTensor,
|
374 |
+
key_values_lens: torch.IntTensor,
|
375 |
+
):
|
376 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
377 |
+
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
378 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
379 |
+
|
380 |
+
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
|
381 |
+
cu_seqlens = cu_seqlens.to(torch.int32)
|
382 |
+
max_seqlen = torch.max(vit_token_seqlens).item()
|
383 |
+
packed_vit_token_embed = self.vit_model(
|
384 |
+
packed_pixel_values=packed_vit_tokens,
|
385 |
+
packed_flattened_position_ids=packed_vit_position_ids,
|
386 |
+
cu_seqlens=cu_seqlens,
|
387 |
+
max_seqlen=max_seqlen,
|
388 |
+
)
|
389 |
+
packed_vit_token_embed = self.connector(packed_vit_token_embed)
|
390 |
+
pos_emb = self.vit_pos_embed(packed_vit_position_ids)
|
391 |
+
packed_vit_token_embed = packed_vit_token_embed + pos_emb
|
392 |
+
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
|
393 |
+
|
394 |
+
extra_inputs = {}
|
395 |
+
if self.use_moe:
|
396 |
+
extra_inputs = {"mode": "und"}
|
397 |
+
|
398 |
+
output = self.language_model.forward_inference(
|
399 |
+
packed_query_sequence=packed_sequence,
|
400 |
+
query_lens=packed_seqlens,
|
401 |
+
packed_query_position_ids=packed_position_ids,
|
402 |
+
packed_query_indexes=packed_indexes,
|
403 |
+
past_key_values=past_key_values,
|
404 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
405 |
+
key_values_lens=key_values_lens,
|
406 |
+
update_past_key_values=True,
|
407 |
+
is_causal=False,
|
408 |
+
**extra_inputs,
|
409 |
+
)
|
410 |
+
past_key_values = output.past_key_values
|
411 |
+
|
412 |
+
return past_key_values
|
413 |
+
|
414 |
+
def prepare_vae_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids, timestep=0):
|
415 |
+
patchified_vae_latent_shapes, packed_vae_position_ids = list(), list()
|
416 |
+
packed_vae_token_indexes = list()
|
417 |
+
packed_text_ids, packed_text_indexes = list(), list()
|
418 |
+
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
|
419 |
+
packed_key_value_indexes = list()
|
420 |
+
|
421 |
+
_curr = curr = 0
|
422 |
+
vae_image_tensors = list()
|
423 |
+
newlens, new_rope = list(), list()
|
424 |
+
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
|
425 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
426 |
+
curr += curr_kvlen
|
427 |
+
|
428 |
+
packed_text_ids.append(new_token_ids['start_of_image'])
|
429 |
+
packed_text_indexes.append(_curr)
|
430 |
+
packed_indexes.append(curr)
|
431 |
+
curr += 1
|
432 |
+
_curr += 1
|
433 |
+
|
434 |
+
image_tensor = transforms(image)
|
435 |
+
vae_image_tensors.append(image_tensor)
|
436 |
+
vae_posiiton_ids = self.get_flattened_position_ids(
|
437 |
+
image_tensor.size(1), image_tensor.size(2),
|
438 |
+
self.latent_downsample,
|
439 |
+
max_num_patches_per_side=self.max_latent_size
|
440 |
+
)
|
441 |
+
packed_vae_position_ids.append(vae_posiiton_ids)
|
442 |
+
H, W = image_tensor.shape[1:]
|
443 |
+
h = H // self.latent_downsample
|
444 |
+
w = W // self.latent_downsample
|
445 |
+
patchified_vae_latent_shapes.append((h, w))
|
446 |
+
|
447 |
+
num_img_tokens = w * h
|
448 |
+
packed_vae_token_indexes.extend(range(_curr, _curr + num_img_tokens))
|
449 |
+
packed_indexes.extend(range(curr, curr + num_img_tokens))
|
450 |
+
curr += num_img_tokens
|
451 |
+
_curr += num_img_tokens
|
452 |
+
|
453 |
+
packed_text_ids.append(new_token_ids['end_of_image'])
|
454 |
+
packed_text_indexes.append(_curr)
|
455 |
+
packed_indexes.append(curr)
|
456 |
+
curr += 1
|
457 |
+
_curr += 1
|
458 |
+
|
459 |
+
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
|
460 |
+
packed_seqlens.append(num_img_tokens + 2)
|
461 |
+
newlens.append(curr_kvlen + num_img_tokens + 2)
|
462 |
+
new_rope.append(curr_position_id + 1)
|
463 |
+
|
464 |
+
image_sizes = [item.shape for item in vae_image_tensors]
|
465 |
+
max_image_size = [max(item) for item in list(zip(*image_sizes))]
|
466 |
+
padded_images = torch.zeros(size=(len(vae_image_tensors), *max_image_size))
|
467 |
+
for i, image_tensor in enumerate(vae_image_tensors):
|
468 |
+
padded_images[i, :, :image_tensor.shape[1], :image_tensor.shape[2]] = image_tensor
|
469 |
+
|
470 |
+
generation_input = {
|
471 |
+
"padded_images": padded_images,
|
472 |
+
"patchified_vae_latent_shapes": patchified_vae_latent_shapes,
|
473 |
+
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
|
474 |
+
"packed_timesteps": torch.tensor([timestep]),
|
475 |
+
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
|
476 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
477 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
478 |
+
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
479 |
+
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
480 |
+
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
481 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
482 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
483 |
+
}
|
484 |
+
|
485 |
+
return generation_input, newlens, new_rope
|
486 |
+
|
487 |
+
@torch.no_grad
|
488 |
+
def forward_cache_update_vae(
|
489 |
+
self,
|
490 |
+
vae_model,
|
491 |
+
past_key_values: NaiveCache,
|
492 |
+
padded_images: torch.Tensor,
|
493 |
+
patchified_vae_latent_shapes: List,
|
494 |
+
packed_vae_position_ids: torch.LongTensor,
|
495 |
+
packed_timesteps: torch.Tensor,
|
496 |
+
packed_vae_token_indexes: torch.LongTensor,
|
497 |
+
packed_text_ids: torch.LongTensor,
|
498 |
+
packed_text_indexes: torch.LongTensor,
|
499 |
+
packed_position_ids: torch.LongTensor,
|
500 |
+
packed_seqlens: torch.IntTensor,
|
501 |
+
packed_indexes: torch.LongTensor,
|
502 |
+
key_values_lens: torch.IntTensor,
|
503 |
+
packed_key_value_indexes: torch.Tensor,
|
504 |
+
):
|
505 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
506 |
+
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
507 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
508 |
+
|
509 |
+
padded_latent = vae_model.encode(padded_images)
|
510 |
+
|
511 |
+
p = self.latent_patch_size
|
512 |
+
packed_latent = list()
|
513 |
+
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
|
514 |
+
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
|
515 |
+
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
|
516 |
+
packed_latent.append(latent)
|
517 |
+
packed_latent = torch.cat(packed_latent, dim=0)
|
518 |
+
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
|
519 |
+
packed_timestep_embeds = self.time_embedder(packed_timesteps)
|
520 |
+
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + packed_pos_embed
|
521 |
+
packed_sequence[packed_vae_token_indexes] = packed_latent
|
522 |
+
|
523 |
+
extra_inputs = {}
|
524 |
+
if self.use_moe:
|
525 |
+
extra_inputs = {
|
526 |
+
"mode": "gen",
|
527 |
+
"packed_vae_token_indexes": packed_vae_token_indexes,
|
528 |
+
"packed_text_indexes": packed_text_indexes
|
529 |
+
}
|
530 |
+
|
531 |
+
output = self.language_model.forward_inference(
|
532 |
+
packed_query_sequence=packed_sequence,
|
533 |
+
query_lens=packed_seqlens,
|
534 |
+
packed_query_position_ids=packed_position_ids,
|
535 |
+
packed_query_indexes=packed_indexes,
|
536 |
+
past_key_values=past_key_values,
|
537 |
+
key_values_lens=key_values_lens,
|
538 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
539 |
+
update_past_key_values=True,
|
540 |
+
is_causal=False,
|
541 |
+
**extra_inputs,
|
542 |
+
)
|
543 |
+
past_key_values = output.past_key_values
|
544 |
+
|
545 |
+
return past_key_values
|
546 |
+
|
547 |
+
def prepare_vae_latent(self, curr_kvlens, curr_rope, image_sizes, new_token_ids):
|
548 |
+
packed_text_ids, packed_text_indexes = list(), list()
|
549 |
+
packed_vae_position_ids, packed_vae_token_indexes, packed_init_noises = list(), list(), list()
|
550 |
+
packed_position_ids, packed_seqlens, packed_indexes = list(), list(), list()
|
551 |
+
packed_key_value_indexes = list()
|
552 |
+
|
553 |
+
query_curr = curr = 0
|
554 |
+
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
|
555 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
556 |
+
curr += curr_kvlen
|
557 |
+
|
558 |
+
packed_text_ids.append(new_token_ids['start_of_image'])
|
559 |
+
packed_text_indexes.append(query_curr)
|
560 |
+
packed_indexes.append(curr)
|
561 |
+
curr += 1
|
562 |
+
query_curr += 1
|
563 |
+
|
564 |
+
vae_posiiton_ids = self.get_flattened_position_ids(
|
565 |
+
H, W,
|
566 |
+
self.latent_downsample,
|
567 |
+
max_num_patches_per_side=self.max_latent_size
|
568 |
+
)
|
569 |
+
packed_vae_position_ids.append(vae_posiiton_ids)
|
570 |
+
|
571 |
+
h, w = H // self.latent_downsample, W // self.latent_downsample
|
572 |
+
num_image_tokens = h * w
|
573 |
+
packed_init_noises.append(
|
574 |
+
torch.randn(num_image_tokens, self.latent_channel * self.latent_patch_size ** 2)
|
575 |
+
)
|
576 |
+
packed_vae_token_indexes.extend(range(query_curr, query_curr + num_image_tokens))
|
577 |
+
packed_indexes.extend(range(curr, curr + num_image_tokens))
|
578 |
+
curr += num_image_tokens
|
579 |
+
query_curr += num_image_tokens
|
580 |
+
|
581 |
+
packed_text_ids.append(new_token_ids['end_of_image'])
|
582 |
+
packed_text_indexes.append(query_curr)
|
583 |
+
packed_indexes.append(curr)
|
584 |
+
curr += 1
|
585 |
+
query_curr += 1
|
586 |
+
|
587 |
+
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
|
588 |
+
packed_seqlens.append(num_image_tokens + 2)
|
589 |
+
|
590 |
+
generation_input = {
|
591 |
+
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
|
592 |
+
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
|
593 |
+
"packed_init_noises": torch.cat(packed_init_noises, dim=0),
|
594 |
+
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
|
595 |
+
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
|
596 |
+
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
|
597 |
+
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
598 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
599 |
+
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
600 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
601 |
+
}
|
602 |
+
|
603 |
+
return generation_input
|
604 |
+
|
605 |
+
def prepare_vae_latent_cfg(self, curr_kvlens, curr_rope, image_sizes):
|
606 |
+
packed_position_ids, packed_indexes, packed_key_value_indexes = list(), list(), list()
|
607 |
+
|
608 |
+
query_curr = curr = 0
|
609 |
+
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
|
610 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
611 |
+
curr += curr_kvlen
|
612 |
+
|
613 |
+
packed_indexes.append(curr)
|
614 |
+
curr += 1
|
615 |
+
query_curr += 1
|
616 |
+
|
617 |
+
h, w = H // self.latent_downsample, W // self.latent_downsample
|
618 |
+
num_image_tokens = h * w
|
619 |
+
packed_indexes.extend(range(curr, curr + num_image_tokens))
|
620 |
+
curr += num_image_tokens
|
621 |
+
query_curr += num_image_tokens
|
622 |
+
|
623 |
+
packed_indexes.append(curr)
|
624 |
+
curr += 1
|
625 |
+
query_curr += 1
|
626 |
+
|
627 |
+
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
|
628 |
+
|
629 |
+
generation_input = {
|
630 |
+
"cfg_packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
|
631 |
+
"cfg_key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
632 |
+
"cfg_packed_query_indexes": torch.tensor(packed_indexes, dtype=torch.long),
|
633 |
+
"cfg_packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
634 |
+
}
|
635 |
+
|
636 |
+
return generation_input
|
637 |
+
|
638 |
+
@torch.no_grad
|
639 |
+
def generate_image(
|
640 |
+
self,
|
641 |
+
packed_text_ids: torch.LongTensor,
|
642 |
+
packed_text_indexes: torch.LongTensor,
|
643 |
+
packed_init_noises: torch.Tensor,
|
644 |
+
packed_vae_position_ids: torch.LongTensor,
|
645 |
+
packed_vae_token_indexes: torch.LongTensor,
|
646 |
+
packed_seqlens: torch.IntTensor,
|
647 |
+
packed_position_ids: torch.LongTensor,
|
648 |
+
packed_indexes: torch.LongTensor,
|
649 |
+
past_key_values: NaiveCache,
|
650 |
+
key_values_lens: torch.IntTensor,
|
651 |
+
packed_key_value_indexes: torch.LongTensor,
|
652 |
+
num_timesteps: int = 24,
|
653 |
+
timestep_shift: float = 1.0,
|
654 |
+
cfg_renorm_min: float = 0.0,
|
655 |
+
cfg_renorm_type: str = "global",
|
656 |
+
cfg_interval: Optional[Tuple[float, float]] = [0, 1],
|
657 |
+
# cfg_text
|
658 |
+
cfg_text_scale: float = 1.0,
|
659 |
+
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
|
660 |
+
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
|
661 |
+
cfg_text_past_key_values: Optional[NaiveCache] = None,
|
662 |
+
cfg_text_key_values_lens: Optional[torch.IntTensor] = None,
|
663 |
+
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
664 |
+
# cfg_img
|
665 |
+
cfg_img_scale: float = 1.0,
|
666 |
+
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
|
667 |
+
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
|
668 |
+
cfg_img_past_key_values: Optional[NaiveCache] = None,
|
669 |
+
cfg_img_key_values_lens: Optional[torch.IntTensor] = None,
|
670 |
+
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
671 |
+
cfg_type: str = "parallel",
|
672 |
+
):
|
673 |
+
x_t = packed_init_noises
|
674 |
+
|
675 |
+
timesteps = torch.linspace(1, 0, num_timesteps, device=x_t.device)
|
676 |
+
timesteps = timestep_shift * timesteps / (1 + (timestep_shift - 1) * timesteps)
|
677 |
+
dts = timesteps[:-1] - timesteps[1:]
|
678 |
+
timesteps = timesteps[:-1]
|
679 |
+
|
680 |
+
for i, t in enumerate(timesteps):
|
681 |
+
|
682 |
+
timestep = torch.tensor([t] * x_t.shape[0], device=x_t.device)
|
683 |
+
if t > cfg_interval[0] and t <= cfg_interval[1]:
|
684 |
+
cfg_text_scale_ = cfg_text_scale
|
685 |
+
cfg_img_scale_ = cfg_img_scale
|
686 |
+
else:
|
687 |
+
cfg_text_scale_ = 1.0
|
688 |
+
cfg_img_scale_ = 1.0
|
689 |
+
v_t = self._forward_flow(
|
690 |
+
x_t=x_t,
|
691 |
+
timestep=timestep,
|
692 |
+
packed_vae_token_indexes=packed_vae_token_indexes,
|
693 |
+
packed_vae_position_ids=packed_vae_position_ids,
|
694 |
+
packed_text_ids=packed_text_ids,
|
695 |
+
packed_text_indexes=packed_text_indexes,
|
696 |
+
packed_position_ids=packed_position_ids,
|
697 |
+
packed_indexes=packed_indexes,
|
698 |
+
packed_seqlens=packed_seqlens,
|
699 |
+
key_values_lens=key_values_lens,
|
700 |
+
past_key_values=past_key_values,
|
701 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
702 |
+
cfg_renorm_min=cfg_renorm_min,
|
703 |
+
cfg_renorm_type=cfg_renorm_type,
|
704 |
+
# cfg_text
|
705 |
+
cfg_text_scale=cfg_text_scale_,
|
706 |
+
cfg_text_packed_position_ids=cfg_text_packed_position_ids,
|
707 |
+
cfg_text_packed_query_indexes=cfg_text_packed_query_indexes,
|
708 |
+
cfg_text_key_values_lens=cfg_text_key_values_lens,
|
709 |
+
cfg_text_past_key_values=cfg_text_past_key_values,
|
710 |
+
cfg_text_packed_key_value_indexes=cfg_text_packed_key_value_indexes,
|
711 |
+
# cfg_img
|
712 |
+
cfg_img_scale=cfg_img_scale_,
|
713 |
+
cfg_img_packed_position_ids=cfg_img_packed_position_ids,
|
714 |
+
cfg_img_packed_query_indexes=cfg_img_packed_query_indexes,
|
715 |
+
cfg_img_key_values_lens=cfg_img_key_values_lens,
|
716 |
+
cfg_img_past_key_values=cfg_img_past_key_values,
|
717 |
+
cfg_img_packed_key_value_indexes=cfg_img_packed_key_value_indexes,
|
718 |
+
cfg_type=cfg_type,
|
719 |
+
)
|
720 |
+
|
721 |
+
x_t = x_t - v_t.to(x_t.device) * dts[i] # velocity pointing from data to noise
|
722 |
+
|
723 |
+
unpacked_latent = x_t.split((packed_seqlens - 2).tolist())
|
724 |
+
return unpacked_latent
|
725 |
+
|
726 |
+
@torch.no_grad
|
727 |
+
def _forward_flow(
|
728 |
+
self,
|
729 |
+
x_t: torch.Tensor,
|
730 |
+
timestep: torch.LongTensor,
|
731 |
+
packed_vae_token_indexes: torch.LongTensor,
|
732 |
+
packed_vae_position_ids: torch.LongTensor,
|
733 |
+
packed_text_ids: torch.LongTensor,
|
734 |
+
packed_text_indexes: torch.LongTensor,
|
735 |
+
packed_indexes: torch.LongTensor,
|
736 |
+
packed_position_ids: torch.LongTensor,
|
737 |
+
packed_seqlens: torch.IntTensor,
|
738 |
+
key_values_lens: torch.IntTensor,
|
739 |
+
past_key_values: NaiveCache,
|
740 |
+
packed_key_value_indexes: torch.LongTensor,
|
741 |
+
cfg_renorm_min: float = 0.0,
|
742 |
+
cfg_renorm_type: str = "global",
|
743 |
+
# cfg_text
|
744 |
+
cfg_text_scale: float = 1.0,
|
745 |
+
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
|
746 |
+
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
|
747 |
+
cfg_text_key_values_lens: Optional[torch.Tensor] = None,
|
748 |
+
cfg_text_past_key_values: Optional[NaiveCache] = None,
|
749 |
+
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
750 |
+
# cfg_img
|
751 |
+
cfg_img_scale: float = 1.0,
|
752 |
+
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
|
753 |
+
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
|
754 |
+
cfg_img_key_values_lens: Optional[torch.Tensor] = None,
|
755 |
+
cfg_img_past_key_values: Optional[NaiveCache] = None,
|
756 |
+
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
|
757 |
+
cfg_type: str = "parallel",
|
758 |
+
):
|
759 |
+
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
|
760 |
+
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
|
761 |
+
packed_sequence[packed_text_indexes] = packed_text_embedding
|
762 |
+
|
763 |
+
assert timestep.unique().shape[0] == 1
|
764 |
+
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
|
765 |
+
packed_timestep_embeds = self.time_embedder(timestep)
|
766 |
+
x_t = self.vae2llm(x_t) + packed_timestep_embeds + packed_pos_embed
|
767 |
+
packed_sequence[packed_vae_token_indexes] = x_t
|
768 |
+
|
769 |
+
extra_inputs = {}
|
770 |
+
if self.use_moe:
|
771 |
+
extra_inputs = {
|
772 |
+
"mode": "gen",
|
773 |
+
"packed_vae_token_indexes": packed_vae_token_indexes,
|
774 |
+
"packed_text_indexes": packed_text_indexes
|
775 |
+
}
|
776 |
+
|
777 |
+
output = self.language_model.forward_inference(
|
778 |
+
packed_query_sequence=packed_sequence,
|
779 |
+
query_lens=packed_seqlens,
|
780 |
+
packed_query_position_ids=packed_position_ids,
|
781 |
+
packed_query_indexes=packed_indexes,
|
782 |
+
past_key_values=past_key_values,
|
783 |
+
key_values_lens=key_values_lens,
|
784 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
785 |
+
update_past_key_values=False,
|
786 |
+
is_causal=False,
|
787 |
+
**extra_inputs,
|
788 |
+
)
|
789 |
+
v_t = self.llm2vae(output.packed_query_sequence)
|
790 |
+
v_t = v_t[packed_vae_token_indexes]
|
791 |
+
|
792 |
+
if cfg_text_scale > 1.0:
|
793 |
+
cfg_text_output = self.language_model.forward_inference(
|
794 |
+
packed_query_sequence=packed_sequence,
|
795 |
+
query_lens=packed_seqlens,
|
796 |
+
packed_query_position_ids=cfg_text_packed_position_ids,
|
797 |
+
packed_query_indexes=cfg_text_packed_query_indexes,
|
798 |
+
past_key_values=cfg_text_past_key_values,
|
799 |
+
key_values_lens=cfg_text_key_values_lens,
|
800 |
+
packed_key_value_indexes=cfg_text_packed_key_value_indexes,
|
801 |
+
update_past_key_values=False,
|
802 |
+
is_causal=False,
|
803 |
+
**extra_inputs,
|
804 |
+
)
|
805 |
+
cfg_text_v_t = self.llm2vae(cfg_text_output.packed_query_sequence)
|
806 |
+
cfg_text_v_t = cfg_text_v_t[packed_vae_token_indexes]
|
807 |
+
|
808 |
+
if cfg_img_scale > 1.0:
|
809 |
+
cfg_img_output = self.language_model.forward_inference(
|
810 |
+
packed_query_sequence=packed_sequence,
|
811 |
+
query_lens=packed_seqlens,
|
812 |
+
packed_query_position_ids=cfg_img_packed_position_ids,
|
813 |
+
packed_query_indexes=cfg_img_packed_query_indexes,
|
814 |
+
past_key_values=cfg_img_past_key_values,
|
815 |
+
key_values_lens=cfg_img_key_values_lens,
|
816 |
+
packed_key_value_indexes=cfg_img_packed_key_value_indexes,
|
817 |
+
update_past_key_values=False,
|
818 |
+
is_causal=False,
|
819 |
+
**extra_inputs,
|
820 |
+
)
|
821 |
+
cfg_img_v_t = self.llm2vae(cfg_img_output.packed_query_sequence)
|
822 |
+
cfg_img_v_t = cfg_img_v_t[packed_vae_token_indexes]
|
823 |
+
|
824 |
+
if cfg_text_scale > 1.0:
|
825 |
+
if cfg_renorm_type == "text_channel":
|
826 |
+
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
|
827 |
+
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
|
828 |
+
norm_v_t_text_ = torch.norm(v_t_text_, dim=-1, keepdim=True)
|
829 |
+
scale = (norm_v_t / (norm_v_t_text_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
|
830 |
+
v_t_text = v_t_text_ * scale
|
831 |
+
if cfg_img_scale > 1.0:
|
832 |
+
v_t = cfg_img_v_t + cfg_img_scale * (v_t_text - cfg_img_v_t)
|
833 |
+
else:
|
834 |
+
v_t = v_t_text
|
835 |
+
else:
|
836 |
+
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
|
837 |
+
|
838 |
+
if cfg_img_scale > 1.0:
|
839 |
+
v_t_ = cfg_img_v_t + cfg_img_scale * (v_t_text_ - cfg_img_v_t)
|
840 |
+
else:
|
841 |
+
v_t_ = v_t_text_
|
842 |
+
|
843 |
+
# NOTE norm is computed over all dimensions, thus currently only supports batch_size = 1 with navit
|
844 |
+
if cfg_renorm_type == "global":
|
845 |
+
norm_v_t = torch.norm(v_t)
|
846 |
+
norm_v_t_ = torch.norm(v_t_)
|
847 |
+
elif cfg_renorm_type == "channel":
|
848 |
+
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
|
849 |
+
norm_v_t_ = torch.norm(v_t_, dim=-1, keepdim=True)
|
850 |
+
else:
|
851 |
+
raise NotImplementedError(f"{cfg_renorm_type} is not suppoprted")
|
852 |
+
scale = (norm_v_t / (norm_v_t_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
|
853 |
+
v_t = v_t_ * scale
|
854 |
+
else:
|
855 |
+
# No CFG
|
856 |
+
pass
|
857 |
+
|
858 |
+
return v_t
|
859 |
+
|
860 |
+
def prepare_start_tokens(self, curr_kvlens, curr_rope, new_token_ids):
|
861 |
+
packed_start_tokens, packed_key_value_indexes = list(), list()
|
862 |
+
packed_query_position_ids = list()
|
863 |
+
|
864 |
+
curr = 0
|
865 |
+
for curr_kvlen, curr_position_id in zip(curr_kvlens, curr_rope):
|
866 |
+
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
|
867 |
+
packed_start_tokens.append(new_token_ids['bos_token_id'])
|
868 |
+
packed_query_position_ids.append(curr_position_id)
|
869 |
+
curr += curr_kvlen
|
870 |
+
|
871 |
+
generation_input = {
|
872 |
+
"packed_start_tokens": torch.tensor(packed_start_tokens, dtype=torch.long),
|
873 |
+
"packed_query_position_ids": torch.tensor(packed_query_position_ids, dtype=torch.long),
|
874 |
+
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
|
875 |
+
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
|
876 |
+
}
|
877 |
+
|
878 |
+
return generation_input
|
879 |
+
|
880 |
+
@torch.no_grad
|
881 |
+
def generate_text(
|
882 |
+
self,
|
883 |
+
past_key_values: NaiveCache,
|
884 |
+
packed_key_value_indexes: torch.LongTensor,
|
885 |
+
key_values_lens: torch.IntTensor,
|
886 |
+
packed_start_tokens: torch.LongTensor,
|
887 |
+
packed_query_position_ids: torch.LongTensor,
|
888 |
+
max_length: int,
|
889 |
+
do_sample: bool = False,
|
890 |
+
temperature: float = 1.0,
|
891 |
+
end_token_id: int = None,
|
892 |
+
):
|
893 |
+
step = 0
|
894 |
+
# generated_sequence = [] # Removed for streaming
|
895 |
+
curr_tokens = packed_start_tokens
|
896 |
+
while step < max_length:
|
897 |
+
# generated_sequence.append(curr_tokens) # Removed for streaming
|
898 |
+
yield curr_tokens # Yield current tokens
|
899 |
+
|
900 |
+
packed_text_embedding = self.language_model.model.embed_tokens(curr_tokens)
|
901 |
+
query_lens = torch.ones_like(curr_tokens)
|
902 |
+
packed_query_indexes = torch.cumsum(key_values_lens, dim=0) + torch.arange(
|
903 |
+
0, len(key_values_lens),
|
904 |
+
device=key_values_lens.device,
|
905 |
+
dtype=key_values_lens.dtype
|
906 |
+
)
|
907 |
+
|
908 |
+
uppacked = list(packed_key_value_indexes.split(key_values_lens.tolist(), dim=0))
|
909 |
+
for i in range(len(uppacked)):
|
910 |
+
uppacked[i] += i
|
911 |
+
packed_key_value_indexes = torch.cat(uppacked, dim=0)
|
912 |
+
|
913 |
+
extra_inputs = {}
|
914 |
+
if self.use_moe:
|
915 |
+
extra_inputs = {"mode": "und"}
|
916 |
+
|
917 |
+
output = self.language_model.forward_inference(
|
918 |
+
packed_query_sequence=packed_text_embedding,
|
919 |
+
query_lens=query_lens,
|
920 |
+
packed_query_position_ids=packed_query_position_ids,
|
921 |
+
packed_query_indexes=packed_query_indexes,
|
922 |
+
past_key_values=past_key_values,
|
923 |
+
key_values_lens=key_values_lens,
|
924 |
+
packed_key_value_indexes=packed_key_value_indexes,
|
925 |
+
update_past_key_values=True,
|
926 |
+
is_causal=True,
|
927 |
+
**extra_inputs,
|
928 |
+
)
|
929 |
+
past_key_values = output.past_key_values
|
930 |
+
packed_query_sequence = output.packed_query_sequence
|
931 |
+
pred_logits = self.language_model.lm_head(packed_query_sequence)
|
932 |
+
|
933 |
+
if do_sample:
|
934 |
+
probs = nn.functional.softmax(pred_logits / temperature, dim=-1)
|
935 |
+
curr_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
936 |
+
else:
|
937 |
+
curr_tokens = torch.argmax(pred_logits, dim=-1)
|
938 |
+
|
939 |
+
uppacked = list(packed_key_value_indexes.split(key_values_lens.tolist(), dim=0))
|
940 |
+
for i in range(len(uppacked)):
|
941 |
+
uppacked[i] = torch.cat(
|
942 |
+
[uppacked[i], torch.tensor([uppacked[i][-1] + 1], device=uppacked[i].device)], dim=0
|
943 |
+
)
|
944 |
+
packed_key_value_indexes = torch.cat(uppacked, dim=0)
|
945 |
+
key_values_lens = key_values_lens + 1
|
946 |
+
packed_query_position_ids = packed_query_position_ids + 1
|
947 |
+
step += 1
|
948 |
+
|
949 |
+
if end_token_id is not None and curr_tokens[0] == end_token_id: # only support batch=1
|
950 |
+
break
|
951 |
+
|
952 |
+
# output_device = generated_sequence[0].device # Removed for streaming
|
953 |
+
# return torch.stack([i.to(output_device) for i in generated_sequence], dim=0) # Removed for streaming
|
954 |
+
|
955 |
+
# for evaluation
|
956 |
+
@torch.no_grad()
|
957 |
+
def chat(
|
958 |
+
self,
|
959 |
+
tokenizer,
|
960 |
+
new_token_ids,
|
961 |
+
image_transform,
|
962 |
+
images,
|
963 |
+
prompt,
|
964 |
+
max_length: int,
|
965 |
+
do_sample: bool = False,
|
966 |
+
temperature: float = 1.0,
|
967 |
+
):
|
968 |
+
device = next(self.parameters()).device
|
969 |
+
|
970 |
+
if isinstance(new_token_ids, dict):
|
971 |
+
for k, v in new_token_ids.items():
|
972 |
+
if torch.is_tensor(v):
|
973 |
+
new_token_ids[k] = v.to(device)
|
974 |
+
elif torch.is_tensor(new_token_ids):
|
975 |
+
new_token_ids = new_token_ids.to(device)
|
976 |
+
|
977 |
+
# prefill
|
978 |
+
past_key_values = NaiveCache(self.config.llm_config.num_hidden_layers)
|
979 |
+
newlens = [0]
|
980 |
+
new_rope = [0]
|
981 |
+
|
982 |
+
# add images
|
983 |
+
for image in images:
|
984 |
+
generation_input, newlens, new_rope = self.prepare_vit_images(
|
985 |
+
curr_kvlens=newlens,
|
986 |
+
curr_rope=new_rope,
|
987 |
+
images=[image],
|
988 |
+
transforms=image_transform,
|
989 |
+
new_token_ids=new_token_ids,
|
990 |
+
)
|
991 |
+
for k, v in generation_input.items():
|
992 |
+
if torch.is_tensor(v):
|
993 |
+
generation_input[k] = v.to(device)
|
994 |
+
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
995 |
+
past_key_values = self.forward_cache_update_vit(past_key_values, **generation_input)
|
996 |
+
|
997 |
+
# add text
|
998 |
+
generation_input, newlens, new_rope = self.prepare_prompts(
|
999 |
+
curr_kvlens=newlens,
|
1000 |
+
curr_rope=new_rope,
|
1001 |
+
prompts=[prompt],
|
1002 |
+
tokenizer=tokenizer,
|
1003 |
+
new_token_ids=new_token_ids,
|
1004 |
+
)
|
1005 |
+
for k, v in generation_input.items():
|
1006 |
+
if torch.is_tensor(v):
|
1007 |
+
generation_input[k] = v.to(device)
|
1008 |
+
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
1009 |
+
past_key_values = self.forward_cache_update_text(past_key_values, **generation_input)
|
1010 |
+
|
1011 |
+
# decode
|
1012 |
+
generation_input = self.prepare_start_tokens(newlens, new_rope, new_token_ids)
|
1013 |
+
for k, v in generation_input.items():
|
1014 |
+
if torch.is_tensor(v):
|
1015 |
+
generation_input[k] = v.to(device)
|
1016 |
+
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
1017 |
+
for unpacked_latent in self.generate_text(
|
1018 |
+
past_key_values=past_key_values,
|
1019 |
+
max_length=max_length,
|
1020 |
+
do_sample=do_sample,
|
1021 |
+
temperature=temperature,
|
1022 |
+
end_token_id=new_token_ids['eos_token_id'],
|
1023 |
+
**generation_input,
|
1024 |
+
):
|
1025 |
+
output = tokenizer.decode(unpacked_latent[:,0])
|
1026 |
+
yield output
|
modeling/bagel/modeling_utils.py
CHANGED
@@ -1,144 +1,144 @@
|
|
1 |
-
# Copyright (c) 2022 Facebook, Inc. and its affiliates.
|
2 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
|
3 |
-
# SPDX-License-Identifier: CC BY-NC 4.0
|
4 |
-
#
|
5 |
-
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
|
6 |
-
#
|
7 |
-
# Original file was released under CC BY-NC 4.0, with the full license text
|
8 |
-
# available at https://github.com/facebookresearch/DiT/blob/main/LICENSE.txt.
|
9 |
-
#
|
10 |
-
# This modified file is released under the same license.
|
11 |
-
|
12 |
-
import math
|
13 |
-
|
14 |
-
import numpy as np
|
15 |
-
import torch
|
16 |
-
from torch import nn
|
17 |
-
from transformers.activations import ACT2FN
|
18 |
-
|
19 |
-
# --------------------------------------------------------
|
20 |
-
# 2D sine-cosine position embedding
|
21 |
-
# References:
|
22 |
-
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
23 |
-
# --------------------------------------------------------
|
24 |
-
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
|
25 |
-
grid_h = np.arange(grid_size, dtype=np.float32)
|
26 |
-
grid_w = np.arange(grid_size, dtype=np.float32)
|
27 |
-
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
28 |
-
grid = np.stack(grid, axis=0)
|
29 |
-
|
30 |
-
grid = grid.reshape([2, 1, grid_size, grid_size])
|
31 |
-
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
32 |
-
if cls_token and extra_tokens > 0:
|
33 |
-
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
34 |
-
return pos_embed
|
35 |
-
|
36 |
-
|
37 |
-
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
38 |
-
assert embed_dim % 2 == 0
|
39 |
-
|
40 |
-
# use half of dimensions to encode grid_h
|
41 |
-
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
42 |
-
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
43 |
-
|
44 |
-
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
45 |
-
return emb
|
46 |
-
|
47 |
-
|
48 |
-
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
49 |
-
"""
|
50 |
-
embed_dim: output dimension for each position
|
51 |
-
pos: a list of positions to be encoded: size (M,)
|
52 |
-
out: (M, D)
|
53 |
-
"""
|
54 |
-
assert embed_dim % 2 == 0
|
55 |
-
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
56 |
-
omega /= embed_dim / 2.
|
57 |
-
omega = 1. / 10000**omega # (D/2,)
|
58 |
-
|
59 |
-
pos = pos.reshape(-1) # (M,)
|
60 |
-
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
61 |
-
|
62 |
-
emb_sin = np.sin(out) # (M, D/2)
|
63 |
-
emb_cos = np.cos(out) # (M, D/2)
|
64 |
-
|
65 |
-
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
66 |
-
return emb
|
67 |
-
|
68 |
-
|
69 |
-
# --------------------------------------------------------
|
70 |
-
# TimestepEmbedder
|
71 |
-
# Reference:
|
72 |
-
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
73 |
-
# --------------------------------------------------------
|
74 |
-
class TimestepEmbedder(nn.Module):
|
75 |
-
"""
|
76 |
-
Embeds scalar timesteps into vector representations.
|
77 |
-
"""
|
78 |
-
def __init__(self, hidden_size, frequency_embedding_size=256):
|
79 |
-
super().__init__()
|
80 |
-
self.mlp = nn.Sequential(
|
81 |
-
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
82 |
-
nn.SiLU(),
|
83 |
-
nn.Linear(hidden_size, hidden_size, bias=True),
|
84 |
-
)
|
85 |
-
self.frequency_embedding_size = frequency_embedding_size
|
86 |
-
|
87 |
-
@staticmethod
|
88 |
-
def timestep_embedding(t, dim, max_period=10000):
|
89 |
-
"""
|
90 |
-
Create sinusoidal timestep embeddings.
|
91 |
-
:param t: a 1-D Tensor of N indices, one per batch element.
|
92 |
-
These may be fractional.
|
93 |
-
:param dim: the dimension of the output.
|
94 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
95 |
-
:return: an (N, D) Tensor of positional embeddings.
|
96 |
-
"""
|
97 |
-
half = dim // 2
|
98 |
-
freqs = torch.exp(
|
99 |
-
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
100 |
-
).to(device=t.device)
|
101 |
-
args = t[:, None].float() * freqs[None]
|
102 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
103 |
-
if dim % 2:
|
104 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
105 |
-
return embedding
|
106 |
-
|
107 |
-
def forward(self, t):
|
108 |
-
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
109 |
-
t_emb = self.mlp(t_freq)
|
110 |
-
return t_emb
|
111 |
-
|
112 |
-
|
113 |
-
class MLPconnector(nn.Module):
|
114 |
-
def __init__(self, in_dim: int, out_dim: int, hidden_act: str):
|
115 |
-
super().__init__()
|
116 |
-
self.activation_fn = ACT2FN[hidden_act]
|
117 |
-
self.fc1 = nn.Linear(in_dim, out_dim)
|
118 |
-
self.fc2 = nn.Linear(out_dim, out_dim)
|
119 |
-
|
120 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
121 |
-
hidden_states = self.fc1(hidden_states)
|
122 |
-
hidden_states = self.activation_fn(hidden_states)
|
123 |
-
hidden_states = self.fc2(hidden_states)
|
124 |
-
return hidden_states
|
125 |
-
|
126 |
-
|
127 |
-
class PositionEmbedding(nn.Module):
|
128 |
-
def __init__(self, max_num_patch_per_side, hidden_size):
|
129 |
-
super().__init__()
|
130 |
-
self.max_num_patch_per_side = max_num_patch_per_side
|
131 |
-
self.hidden_size = hidden_size
|
132 |
-
self.pos_embed = nn.Parameter(
|
133 |
-
torch.zeros(max_num_patch_per_side ** 2, hidden_size),
|
134 |
-
requires_grad=False
|
135 |
-
)
|
136 |
-
self._init_weights()
|
137 |
-
|
138 |
-
def _init_weights(self):
|
139 |
-
# Initialize (and freeze) pos_embed by sin-cos embedding:
|
140 |
-
pos_embed = get_2d_sincos_pos_embed(self.hidden_size, self.max_num_patch_per_side)
|
141 |
-
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float())
|
142 |
-
|
143 |
-
def forward(self, position_ids):
|
144 |
return self.pos_embed[position_ids]
|
|
|
1 |
+
# Copyright (c) 2022 Facebook, Inc. and its affiliates.
|
2 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
|
3 |
+
# SPDX-License-Identifier: CC BY-NC 4.0
|
4 |
+
#
|
5 |
+
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
|
6 |
+
#
|
7 |
+
# Original file was released under CC BY-NC 4.0, with the full license text
|
8 |
+
# available at https://github.com/facebookresearch/DiT/blob/main/LICENSE.txt.
|
9 |
+
#
|
10 |
+
# This modified file is released under the same license.
|
11 |
+
|
12 |
+
import math
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
from transformers.activations import ACT2FN
|
18 |
+
|
19 |
+
# --------------------------------------------------------
|
20 |
+
# 2D sine-cosine position embedding
|
21 |
+
# References:
|
22 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
23 |
+
# --------------------------------------------------------
|
24 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
|
25 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
26 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
27 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
28 |
+
grid = np.stack(grid, axis=0)
|
29 |
+
|
30 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
31 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
32 |
+
if cls_token and extra_tokens > 0:
|
33 |
+
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
|
34 |
+
return pos_embed
|
35 |
+
|
36 |
+
|
37 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
38 |
+
assert embed_dim % 2 == 0
|
39 |
+
|
40 |
+
# use half of dimensions to encode grid_h
|
41 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
42 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
43 |
+
|
44 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
45 |
+
return emb
|
46 |
+
|
47 |
+
|
48 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
49 |
+
"""
|
50 |
+
embed_dim: output dimension for each position
|
51 |
+
pos: a list of positions to be encoded: size (M,)
|
52 |
+
out: (M, D)
|
53 |
+
"""
|
54 |
+
assert embed_dim % 2 == 0
|
55 |
+
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
56 |
+
omega /= embed_dim / 2.
|
57 |
+
omega = 1. / 10000**omega # (D/2,)
|
58 |
+
|
59 |
+
pos = pos.reshape(-1) # (M,)
|
60 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
61 |
+
|
62 |
+
emb_sin = np.sin(out) # (M, D/2)
|
63 |
+
emb_cos = np.cos(out) # (M, D/2)
|
64 |
+
|
65 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
66 |
+
return emb
|
67 |
+
|
68 |
+
|
69 |
+
# --------------------------------------------------------
|
70 |
+
# TimestepEmbedder
|
71 |
+
# Reference:
|
72 |
+
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
|
73 |
+
# --------------------------------------------------------
|
74 |
+
class TimestepEmbedder(nn.Module):
|
75 |
+
"""
|
76 |
+
Embeds scalar timesteps into vector representations.
|
77 |
+
"""
|
78 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
79 |
+
super().__init__()
|
80 |
+
self.mlp = nn.Sequential(
|
81 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
82 |
+
nn.SiLU(),
|
83 |
+
nn.Linear(hidden_size, hidden_size, bias=True),
|
84 |
+
)
|
85 |
+
self.frequency_embedding_size = frequency_embedding_size
|
86 |
+
|
87 |
+
@staticmethod
|
88 |
+
def timestep_embedding(t, dim, max_period=10000):
|
89 |
+
"""
|
90 |
+
Create sinusoidal timestep embeddings.
|
91 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
92 |
+
These may be fractional.
|
93 |
+
:param dim: the dimension of the output.
|
94 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
95 |
+
:return: an (N, D) Tensor of positional embeddings.
|
96 |
+
"""
|
97 |
+
half = dim // 2
|
98 |
+
freqs = torch.exp(
|
99 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
100 |
+
).to(device=t.device)
|
101 |
+
args = t[:, None].float() * freqs[None]
|
102 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
103 |
+
if dim % 2:
|
104 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
105 |
+
return embedding
|
106 |
+
|
107 |
+
def forward(self, t):
|
108 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
109 |
+
t_emb = self.mlp(t_freq)
|
110 |
+
return t_emb
|
111 |
+
|
112 |
+
|
113 |
+
class MLPconnector(nn.Module):
|
114 |
+
def __init__(self, in_dim: int, out_dim: int, hidden_act: str):
|
115 |
+
super().__init__()
|
116 |
+
self.activation_fn = ACT2FN[hidden_act]
|
117 |
+
self.fc1 = nn.Linear(in_dim, out_dim)
|
118 |
+
self.fc2 = nn.Linear(out_dim, out_dim)
|
119 |
+
|
120 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
121 |
+
hidden_states = self.fc1(hidden_states)
|
122 |
+
hidden_states = self.activation_fn(hidden_states)
|
123 |
+
hidden_states = self.fc2(hidden_states)
|
124 |
+
return hidden_states
|
125 |
+
|
126 |
+
|
127 |
+
class PositionEmbedding(nn.Module):
|
128 |
+
def __init__(self, max_num_patch_per_side, hidden_size):
|
129 |
+
super().__init__()
|
130 |
+
self.max_num_patch_per_side = max_num_patch_per_side
|
131 |
+
self.hidden_size = hidden_size
|
132 |
+
self.pos_embed = nn.Parameter(
|
133 |
+
torch.zeros(max_num_patch_per_side ** 2, hidden_size),
|
134 |
+
requires_grad=False
|
135 |
+
)
|
136 |
+
self._init_weights()
|
137 |
+
|
138 |
+
def _init_weights(self):
|
139 |
+
# Initialize (and freeze) pos_embed by sin-cos embedding:
|
140 |
+
pos_embed = get_2d_sincos_pos_embed(self.hidden_size, self.max_num_patch_per_side)
|
141 |
+
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float())
|
142 |
+
|
143 |
+
def forward(self, position_ids):
|
144 |
return self.pos_embed[position_ids]
|
modeling/bagel/qwen2_navit.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
modeling/bagel/siglip_navit.py
CHANGED
@@ -1,402 +1,402 @@
|
|
1 |
-
# Copyright (c) 2024 The HuggingFace Inc. team.
|
2 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
|
3 |
-
# SPDX-License-Identifier: Apache-2.0
|
4 |
-
#
|
5 |
-
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
|
6 |
-
#
|
7 |
-
# Original file was released under Apache-2.0, with the full license text
|
8 |
-
# available at https://github.com/huggingface/transformers/blob/main/LICENSE.
|
9 |
-
#
|
10 |
-
# This modified file is released under the same license.
|
11 |
-
|
12 |
-
import torch
|
13 |
-
from torch import nn
|
14 |
-
|
15 |
-
from transformers.activations import ACT2FN
|
16 |
-
from modeling.siglip.configuration_siglip import SiglipVisionConfig as _SiglipVisionConfig
|
17 |
-
from modeling.siglip.modeling_siglip import SiglipAttention, SiglipPreTrainedModel
|
18 |
-
from flash_attn import flash_attn_varlen_func
|
19 |
-
|
20 |
-
|
21 |
-
class SiglipVisionConfig(_SiglipVisionConfig):
|
22 |
-
r"""
|
23 |
-
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
24 |
-
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
25 |
-
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
26 |
-
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
27 |
-
|
28 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
29 |
-
documentation from [`PretrainedConfig`] for more information.
|
30 |
-
|
31 |
-
Args:
|
32 |
-
hidden_size (`int`, *optional*, defaults to 768):
|
33 |
-
Dimensionality of the encoder layers and the pooler layer.
|
34 |
-
intermediate_size (`int`, *optional*, defaults to 3072):
|
35 |
-
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
36 |
-
num_hidden_layers (`int`, *optional*, defaults to 12):
|
37 |
-
Number of hidden layers in the Transformer encoder.
|
38 |
-
num_attention_heads (`int`, *optional*, defaults to 12):
|
39 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
40 |
-
num_channels (`int`, *optional*, defaults to 3):
|
41 |
-
Number of channels in the input images.
|
42 |
-
image_size (`int`, *optional*, defaults to 224):
|
43 |
-
The size (resolution) of each image.
|
44 |
-
patch_size (`int`, *optional*, defaults to 16):
|
45 |
-
The size (resolution) of each patch.
|
46 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
47 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
48 |
-
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
49 |
-
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
50 |
-
The epsilon used by the layer normalization layers.
|
51 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
52 |
-
The dropout ratio for the attention probabilities.
|
53 |
-
|
54 |
-
Example:
|
55 |
-
|
56 |
-
```python
|
57 |
-
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
58 |
-
|
59 |
-
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
60 |
-
>>> configuration = SiglipVisionConfig()
|
61 |
-
|
62 |
-
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
63 |
-
>>> model = SiglipVisionModel(configuration)
|
64 |
-
|
65 |
-
>>> # Accessing the model configuration
|
66 |
-
>>> configuration = model.config
|
67 |
-
```"""
|
68 |
-
|
69 |
-
model_type = "siglip_vision_model"
|
70 |
-
|
71 |
-
def __init__(
|
72 |
-
self,
|
73 |
-
hidden_size=768,
|
74 |
-
intermediate_size=3072,
|
75 |
-
num_hidden_layers=12,
|
76 |
-
num_attention_heads=12,
|
77 |
-
num_channels=3,
|
78 |
-
image_size=224,
|
79 |
-
patch_size=16,
|
80 |
-
hidden_act="gelu_pytorch_tanh",
|
81 |
-
layer_norm_eps=1e-6,
|
82 |
-
attention_dropout=0.0,
|
83 |
-
rope=True,
|
84 |
-
**kwargs,
|
85 |
-
):
|
86 |
-
super().__init__(
|
87 |
-
hidden_size=hidden_size,
|
88 |
-
intermediate_size=intermediate_size,
|
89 |
-
num_hidden_layers=num_hidden_layers,
|
90 |
-
num_attention_heads=num_attention_heads,
|
91 |
-
num_channels=num_channels,
|
92 |
-
image_size=image_size,
|
93 |
-
patch_size=patch_size,
|
94 |
-
hidden_act=hidden_act,
|
95 |
-
layer_norm_eps=layer_norm_eps,
|
96 |
-
attention_dropout=attention_dropout,
|
97 |
-
**kwargs)
|
98 |
-
|
99 |
-
self.rope = rope
|
100 |
-
|
101 |
-
|
102 |
-
class RotaryEmbedding2D(torch.nn.Module):
|
103 |
-
def __init__(self, dim, max_h, max_w, base=10000):
|
104 |
-
super().__init__()
|
105 |
-
freq = torch.arange(0, dim, 2, dtype=torch.int64).float() / dim
|
106 |
-
inv_freq = 1.0 / (base ** freq)
|
107 |
-
|
108 |
-
grid_h = torch.arange(0, max_h)
|
109 |
-
grid_h = grid_h.to(inv_freq.dtype)
|
110 |
-
grid_h = grid_h[:, None].repeat(1, max_w)
|
111 |
-
|
112 |
-
grid_w = torch.arange(0, max_w)
|
113 |
-
grid_w = grid_w.to(inv_freq.dtype)
|
114 |
-
grid_w = grid_w[None, :].repeat(max_h, 1)
|
115 |
-
|
116 |
-
cos_h, sin_h = self._forward_one_side(grid_h, inv_freq)
|
117 |
-
cos_w, sin_w = self._forward_one_side(grid_w, inv_freq)
|
118 |
-
|
119 |
-
self.register_buffer("cos_h", cos_h)
|
120 |
-
self.register_buffer("sin_h", sin_h)
|
121 |
-
self.register_buffer("cos_w", cos_w)
|
122 |
-
self.register_buffer("sin_w", sin_w)
|
123 |
-
|
124 |
-
def _forward_one_side(self, grid, inv_freq):
|
125 |
-
freqs = grid[..., None] * inv_freq[None, None, :]
|
126 |
-
emb = torch.cat((freqs, freqs), dim=-1).flatten(0, 1)
|
127 |
-
return emb.cos(), emb.sin()
|
128 |
-
|
129 |
-
|
130 |
-
def rotate_half(x):
|
131 |
-
x1 = x[..., : x.shape[-1] // 2]
|
132 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
133 |
-
return torch.cat((-x2, x1), dim=-1)
|
134 |
-
|
135 |
-
|
136 |
-
def apply_rotary_pos_emb(q, k, cos, sin):
|
137 |
-
# unsqueeze due to the head dimension
|
138 |
-
cos = cos.unsqueeze(1)
|
139 |
-
sin = sin.unsqueeze(1)
|
140 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
141 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
142 |
-
return q_embed, k_embed
|
143 |
-
|
144 |
-
|
145 |
-
class SiglipVisionEmbeddings(nn.Module):
|
146 |
-
def __init__(self, config: SiglipVisionConfig):
|
147 |
-
super().__init__()
|
148 |
-
self.config = config
|
149 |
-
self.embed_dim = config.hidden_size
|
150 |
-
self.image_size = config.image_size
|
151 |
-
self.patch_size = config.patch_size
|
152 |
-
|
153 |
-
self.patch_embedding = nn.Conv2d(
|
154 |
-
in_channels=config.num_channels,
|
155 |
-
out_channels=self.embed_dim,
|
156 |
-
kernel_size=self.patch_size,
|
157 |
-
stride=self.patch_size,
|
158 |
-
padding="valid",
|
159 |
-
)
|
160 |
-
|
161 |
-
self.num_patches_per_side = self.image_size // self.patch_size
|
162 |
-
self.num_patches = self.num_patches_per_side**2
|
163 |
-
self.num_positions = self.num_patches
|
164 |
-
if not config.rope:
|
165 |
-
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
166 |
-
|
167 |
-
def convert_conv2d_to_linear(self, config, meta=False):
|
168 |
-
if meta:
|
169 |
-
linear_patch_embedding = nn.Linear(
|
170 |
-
config.num_channels * self.patch_size ** 2, self.embed_dim, bias=True, device='meta'
|
171 |
-
)
|
172 |
-
else:
|
173 |
-
linear_patch_embedding = nn.Linear(
|
174 |
-
config.num_channels * self.patch_size ** 2, self.embed_dim, bias=True
|
175 |
-
)
|
176 |
-
W = self.patch_embedding.weight.permute(0, 2, 3, 1).reshape(
|
177 |
-
self.embed_dim, config.num_channels * self.patch_size ** 2
|
178 |
-
)
|
179 |
-
linear_patch_embedding.weight.data = W
|
180 |
-
linear_patch_embedding.bias.data = self.patch_embedding.bias.data
|
181 |
-
del self.patch_embedding
|
182 |
-
self.patch_embedding = linear_patch_embedding
|
183 |
-
|
184 |
-
def forward(
|
185 |
-
self,
|
186 |
-
packed_pixel_values: torch.FloatTensor,
|
187 |
-
packed_flattened_position_ids: torch.LongTensor
|
188 |
-
) -> torch.Tensor:
|
189 |
-
|
190 |
-
patch_embeds = self.patch_embedding(packed_pixel_values)
|
191 |
-
if not self.config.rope:
|
192 |
-
embeddings = patch_embeds + self.position_embedding(packed_flattened_position_ids)
|
193 |
-
else:
|
194 |
-
embeddings = patch_embeds
|
195 |
-
return embeddings
|
196 |
-
|
197 |
-
|
198 |
-
class SiglipFlashAttention2(SiglipAttention):
|
199 |
-
def __init__(self, *args, **kwargs):
|
200 |
-
super().__init__(*args, **kwargs)
|
201 |
-
|
202 |
-
def forward(
|
203 |
-
self,
|
204 |
-
hidden_states: torch.Tensor,
|
205 |
-
cu_seqlens: torch.IntTensor,
|
206 |
-
max_seqlen: int,
|
207 |
-
cos_h: torch.Tensor = None,
|
208 |
-
sin_h: torch.Tensor = None,
|
209 |
-
cos_w: torch.Tensor = None,
|
210 |
-
sin_w: torch.Tensor = None,
|
211 |
-
**kwargs,
|
212 |
-
) -> torch.Tensor:
|
213 |
-
|
214 |
-
total_q_len, _ = hidden_states.size()
|
215 |
-
|
216 |
-
query_states = self.q_proj(hidden_states)
|
217 |
-
key_states = self.k_proj(hidden_states)
|
218 |
-
value_states = self.v_proj(hidden_states)
|
219 |
-
|
220 |
-
query_states = query_states.view(total_q_len, self.num_heads, self.head_dim)
|
221 |
-
key_states = key_states.view(total_q_len, self.num_heads, self.head_dim)
|
222 |
-
value_states = value_states.view(total_q_len, self.num_heads, self.head_dim)
|
223 |
-
|
224 |
-
if self.config.rope:
|
225 |
-
qh, qw = query_states[:, :, :self.head_dim // 2], query_states[:, :, self.head_dim // 2:]
|
226 |
-
kh, kw = key_states[:, :, :self.head_dim // 2], key_states[:, :, self.head_dim // 2:]
|
227 |
-
qh, kh = apply_rotary_pos_emb(qh, kh, cos_h, sin_h)
|
228 |
-
qw, kw = apply_rotary_pos_emb(qw, kw, cos_w, sin_w)
|
229 |
-
query_states = torch.cat([qh, qw], dim=-1)
|
230 |
-
key_states = torch.cat([kh, kw], dim=-1)
|
231 |
-
|
232 |
-
attn_output = flash_attn_varlen_func(
|
233 |
-
query_states.to(torch.bfloat16),
|
234 |
-
key_states.to(torch.bfloat16),
|
235 |
-
value_states.to(torch.bfloat16),
|
236 |
-
cu_seqlens_q=cu_seqlens,
|
237 |
-
cu_seqlens_k=cu_seqlens,
|
238 |
-
max_seqlen_q=max_seqlen,
|
239 |
-
max_seqlen_k=max_seqlen,
|
240 |
-
causal=False,
|
241 |
-
)
|
242 |
-
|
243 |
-
attn_output = self.out_proj(attn_output.reshape(total_q_len, -1))
|
244 |
-
return attn_output
|
245 |
-
|
246 |
-
|
247 |
-
class SiglipMLP(nn.Module):
|
248 |
-
def __init__(self, config):
|
249 |
-
super().__init__()
|
250 |
-
self.config = config
|
251 |
-
self.activation_fn = ACT2FN[config.hidden_act]
|
252 |
-
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
253 |
-
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
254 |
-
|
255 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
256 |
-
hidden_states = self.fc1(hidden_states)
|
257 |
-
hidden_states = self.activation_fn(hidden_states)
|
258 |
-
hidden_states = self.fc2(hidden_states)
|
259 |
-
return hidden_states
|
260 |
-
|
261 |
-
|
262 |
-
class SiglipEncoderLayer(nn.Module):
|
263 |
-
def __init__(self, config: SiglipVisionConfig):
|
264 |
-
super().__init__()
|
265 |
-
self.embed_dim = config.hidden_size
|
266 |
-
self.self_attn = SiglipFlashAttention2(config)
|
267 |
-
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
268 |
-
self.mlp = SiglipMLP(config)
|
269 |
-
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
270 |
-
|
271 |
-
def forward(
|
272 |
-
self,
|
273 |
-
hidden_states: torch.Tensor,
|
274 |
-
cu_seqlens: torch.IntTensor,
|
275 |
-
max_seqlen: int,
|
276 |
-
cos_h: torch.Tensor = None,
|
277 |
-
sin_h: torch.Tensor = None,
|
278 |
-
cos_w: torch.Tensor = None,
|
279 |
-
sin_w: torch.Tensor = None
|
280 |
-
) -> torch.Tensor:
|
281 |
-
residual = hidden_states
|
282 |
-
|
283 |
-
hidden_states = self.layer_norm1(hidden_states)
|
284 |
-
hidden_states = self.self_attn(
|
285 |
-
hidden_states=hidden_states,
|
286 |
-
cu_seqlens=cu_seqlens,
|
287 |
-
max_seqlen=max_seqlen,
|
288 |
-
cos_h=cos_h,
|
289 |
-
sin_h=sin_h,
|
290 |
-
cos_w=cos_w,
|
291 |
-
sin_w=sin_w
|
292 |
-
)
|
293 |
-
hidden_states = residual + hidden_states
|
294 |
-
|
295 |
-
residual = hidden_states
|
296 |
-
hidden_states = self.layer_norm2(hidden_states)
|
297 |
-
hidden_states = self.mlp(hidden_states)
|
298 |
-
hidden_states = residual + hidden_states
|
299 |
-
|
300 |
-
return hidden_states
|
301 |
-
|
302 |
-
|
303 |
-
class SiglipEncoder(nn.Module):
|
304 |
-
def __init__(self, config: SiglipVisionConfig):
|
305 |
-
super().__init__()
|
306 |
-
self.config = config
|
307 |
-
self.layers = nn.ModuleList(
|
308 |
-
[SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
309 |
-
)
|
310 |
-
|
311 |
-
def forward(
|
312 |
-
self,
|
313 |
-
inputs_embeds: torch.Tensor,
|
314 |
-
cu_seqlens: torch.IntTensor,
|
315 |
-
max_seqlen: int,
|
316 |
-
cos_h: torch.Tensor = None,
|
317 |
-
sin_h: torch.Tensor = None,
|
318 |
-
cos_w: torch.Tensor = None,
|
319 |
-
sin_w: torch.Tensor = None,
|
320 |
-
) -> torch.Tensor:
|
321 |
-
|
322 |
-
hidden_states = inputs_embeds
|
323 |
-
for encoder_layer in self.layers:
|
324 |
-
hidden_states = encoder_layer(hidden_states, cu_seqlens, max_seqlen,
|
325 |
-
cos_h=cos_h, sin_h=sin_h, cos_w=cos_w, sin_w=sin_w)
|
326 |
-
|
327 |
-
return hidden_states
|
328 |
-
|
329 |
-
|
330 |
-
class SiglipVisionTransformer(nn.Module):
|
331 |
-
def __init__(self, config: SiglipVisionConfig):
|
332 |
-
super().__init__()
|
333 |
-
self.config = config
|
334 |
-
embed_dim = config.hidden_size
|
335 |
-
|
336 |
-
self.embeddings = SiglipVisionEmbeddings(config)
|
337 |
-
if config.rope:
|
338 |
-
max_size = config.image_size // config.patch_size
|
339 |
-
dim_head = config.hidden_size // config.num_attention_heads
|
340 |
-
self.rope = RotaryEmbedding2D(dim_head // 2, max_size, max_size)
|
341 |
-
|
342 |
-
self.encoder = SiglipEncoder(config)
|
343 |
-
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
344 |
-
|
345 |
-
def forward(
|
346 |
-
self,
|
347 |
-
packed_pixel_values: torch.Tensor,
|
348 |
-
packed_flattened_position_ids: torch.LongTensor,
|
349 |
-
cu_seqlens: torch.IntTensor,
|
350 |
-
max_seqlen: int,
|
351 |
-
) -> torch.Tensor:
|
352 |
-
hidden_states = self.embeddings(
|
353 |
-
packed_pixel_values=packed_pixel_values,
|
354 |
-
packed_flattened_position_ids=packed_flattened_position_ids
|
355 |
-
)
|
356 |
-
|
357 |
-
extra_inputs = {}
|
358 |
-
if self.config.rope:
|
359 |
-
extra_inputs.update(
|
360 |
-
cos_h = self.rope.cos_h[packed_flattened_position_ids],
|
361 |
-
sin_h = self.rope.sin_h[packed_flattened_position_ids],
|
362 |
-
cos_w = self.rope.cos_w[packed_flattened_position_ids],
|
363 |
-
sin_w = self.rope.sin_w[packed_flattened_position_ids]
|
364 |
-
)
|
365 |
-
|
366 |
-
last_hidden_state = self.encoder(
|
367 |
-
inputs_embeds=hidden_states, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen,
|
368 |
-
**extra_inputs
|
369 |
-
)
|
370 |
-
last_hidden_state = self.post_layernorm(last_hidden_state)
|
371 |
-
return last_hidden_state
|
372 |
-
|
373 |
-
|
374 |
-
class SiglipVisionModel(SiglipPreTrainedModel):
|
375 |
-
config_class = SiglipVisionConfig
|
376 |
-
main_input_name = "packed_pixel_values"
|
377 |
-
|
378 |
-
def __init__(self, config: SiglipVisionConfig):
|
379 |
-
super().__init__(config)
|
380 |
-
|
381 |
-
self.vision_model = SiglipVisionTransformer(config)
|
382 |
-
|
383 |
-
# Initialize weights and apply final processing
|
384 |
-
self.post_init()
|
385 |
-
|
386 |
-
def get_input_embeddings(self) -> nn.Module:
|
387 |
-
return self.vision_model.embeddings.patch_embedding
|
388 |
-
|
389 |
-
def forward(
|
390 |
-
self,
|
391 |
-
packed_pixel_values: torch.Tensor,
|
392 |
-
packed_flattened_position_ids: torch.LongTensor,
|
393 |
-
cu_seqlens: torch.IntTensor,
|
394 |
-
max_seqlen: int,
|
395 |
-
) -> torch.Tensor:
|
396 |
-
|
397 |
-
return self.vision_model(
|
398 |
-
packed_pixel_values=packed_pixel_values,
|
399 |
-
packed_flattened_position_ids=packed_flattened_position_ids,
|
400 |
-
cu_seqlens=cu_seqlens,
|
401 |
-
max_seqlen=max_seqlen,
|
402 |
-
)
|
|
|
1 |
+
# Copyright (c) 2024 The HuggingFace Inc. team.
|
2 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
|
3 |
+
# SPDX-License-Identifier: Apache-2.0
|
4 |
+
#
|
5 |
+
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
|
6 |
+
#
|
7 |
+
# Original file was released under Apache-2.0, with the full license text
|
8 |
+
# available at https://github.com/huggingface/transformers/blob/main/LICENSE.
|
9 |
+
#
|
10 |
+
# This modified file is released under the same license.
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from modeling.siglip.configuration_siglip import SiglipVisionConfig as _SiglipVisionConfig
|
17 |
+
from modeling.siglip.modeling_siglip import SiglipAttention, SiglipPreTrainedModel
|
18 |
+
from flash_attn import flash_attn_varlen_func
|
19 |
+
|
20 |
+
|
21 |
+
class SiglipVisionConfig(_SiglipVisionConfig):
|
22 |
+
r"""
|
23 |
+
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
24 |
+
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
25 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
26 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
27 |
+
|
28 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
29 |
+
documentation from [`PretrainedConfig`] for more information.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
33 |
+
Dimensionality of the encoder layers and the pooler layer.
|
34 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
35 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
36 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
37 |
+
Number of hidden layers in the Transformer encoder.
|
38 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
39 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
40 |
+
num_channels (`int`, *optional*, defaults to 3):
|
41 |
+
Number of channels in the input images.
|
42 |
+
image_size (`int`, *optional*, defaults to 224):
|
43 |
+
The size (resolution) of each image.
|
44 |
+
patch_size (`int`, *optional*, defaults to 16):
|
45 |
+
The size (resolution) of each patch.
|
46 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
47 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
48 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
49 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
50 |
+
The epsilon used by the layer normalization layers.
|
51 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
52 |
+
The dropout ratio for the attention probabilities.
|
53 |
+
|
54 |
+
Example:
|
55 |
+
|
56 |
+
```python
|
57 |
+
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
58 |
+
|
59 |
+
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
60 |
+
>>> configuration = SiglipVisionConfig()
|
61 |
+
|
62 |
+
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
63 |
+
>>> model = SiglipVisionModel(configuration)
|
64 |
+
|
65 |
+
>>> # Accessing the model configuration
|
66 |
+
>>> configuration = model.config
|
67 |
+
```"""
|
68 |
+
|
69 |
+
model_type = "siglip_vision_model"
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
hidden_size=768,
|
74 |
+
intermediate_size=3072,
|
75 |
+
num_hidden_layers=12,
|
76 |
+
num_attention_heads=12,
|
77 |
+
num_channels=3,
|
78 |
+
image_size=224,
|
79 |
+
patch_size=16,
|
80 |
+
hidden_act="gelu_pytorch_tanh",
|
81 |
+
layer_norm_eps=1e-6,
|
82 |
+
attention_dropout=0.0,
|
83 |
+
rope=True,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
super().__init__(
|
87 |
+
hidden_size=hidden_size,
|
88 |
+
intermediate_size=intermediate_size,
|
89 |
+
num_hidden_layers=num_hidden_layers,
|
90 |
+
num_attention_heads=num_attention_heads,
|
91 |
+
num_channels=num_channels,
|
92 |
+
image_size=image_size,
|
93 |
+
patch_size=patch_size,
|
94 |
+
hidden_act=hidden_act,
|
95 |
+
layer_norm_eps=layer_norm_eps,
|
96 |
+
attention_dropout=attention_dropout,
|
97 |
+
**kwargs)
|
98 |
+
|
99 |
+
self.rope = rope
|
100 |
+
|
101 |
+
|
102 |
+
class RotaryEmbedding2D(torch.nn.Module):
|
103 |
+
def __init__(self, dim, max_h, max_w, base=10000):
|
104 |
+
super().__init__()
|
105 |
+
freq = torch.arange(0, dim, 2, dtype=torch.int64).float() / dim
|
106 |
+
inv_freq = 1.0 / (base ** freq)
|
107 |
+
|
108 |
+
grid_h = torch.arange(0, max_h)
|
109 |
+
grid_h = grid_h.to(inv_freq.dtype)
|
110 |
+
grid_h = grid_h[:, None].repeat(1, max_w)
|
111 |
+
|
112 |
+
grid_w = torch.arange(0, max_w)
|
113 |
+
grid_w = grid_w.to(inv_freq.dtype)
|
114 |
+
grid_w = grid_w[None, :].repeat(max_h, 1)
|
115 |
+
|
116 |
+
cos_h, sin_h = self._forward_one_side(grid_h, inv_freq)
|
117 |
+
cos_w, sin_w = self._forward_one_side(grid_w, inv_freq)
|
118 |
+
|
119 |
+
self.register_buffer("cos_h", cos_h)
|
120 |
+
self.register_buffer("sin_h", sin_h)
|
121 |
+
self.register_buffer("cos_w", cos_w)
|
122 |
+
self.register_buffer("sin_w", sin_w)
|
123 |
+
|
124 |
+
def _forward_one_side(self, grid, inv_freq):
|
125 |
+
freqs = grid[..., None] * inv_freq[None, None, :]
|
126 |
+
emb = torch.cat((freqs, freqs), dim=-1).flatten(0, 1)
|
127 |
+
return emb.cos(), emb.sin()
|
128 |
+
|
129 |
+
|
130 |
+
def rotate_half(x):
|
131 |
+
x1 = x[..., : x.shape[-1] // 2]
|
132 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
133 |
+
return torch.cat((-x2, x1), dim=-1)
|
134 |
+
|
135 |
+
|
136 |
+
def apply_rotary_pos_emb(q, k, cos, sin):
|
137 |
+
# unsqueeze due to the head dimension
|
138 |
+
cos = cos.unsqueeze(1)
|
139 |
+
sin = sin.unsqueeze(1)
|
140 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
141 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
142 |
+
return q_embed, k_embed
|
143 |
+
|
144 |
+
|
145 |
+
class SiglipVisionEmbeddings(nn.Module):
|
146 |
+
def __init__(self, config: SiglipVisionConfig):
|
147 |
+
super().__init__()
|
148 |
+
self.config = config
|
149 |
+
self.embed_dim = config.hidden_size
|
150 |
+
self.image_size = config.image_size
|
151 |
+
self.patch_size = config.patch_size
|
152 |
+
|
153 |
+
self.patch_embedding = nn.Conv2d(
|
154 |
+
in_channels=config.num_channels,
|
155 |
+
out_channels=self.embed_dim,
|
156 |
+
kernel_size=self.patch_size,
|
157 |
+
stride=self.patch_size,
|
158 |
+
padding="valid",
|
159 |
+
)
|
160 |
+
|
161 |
+
self.num_patches_per_side = self.image_size // self.patch_size
|
162 |
+
self.num_patches = self.num_patches_per_side**2
|
163 |
+
self.num_positions = self.num_patches
|
164 |
+
if not config.rope:
|
165 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
166 |
+
|
167 |
+
def convert_conv2d_to_linear(self, config, meta=False):
|
168 |
+
if meta:
|
169 |
+
linear_patch_embedding = nn.Linear(
|
170 |
+
config.num_channels * self.patch_size ** 2, self.embed_dim, bias=True, device='meta'
|
171 |
+
)
|
172 |
+
else:
|
173 |
+
linear_patch_embedding = nn.Linear(
|
174 |
+
config.num_channels * self.patch_size ** 2, self.embed_dim, bias=True
|
175 |
+
)
|
176 |
+
W = self.patch_embedding.weight.permute(0, 2, 3, 1).reshape(
|
177 |
+
self.embed_dim, config.num_channels * self.patch_size ** 2
|
178 |
+
)
|
179 |
+
linear_patch_embedding.weight.data = W
|
180 |
+
linear_patch_embedding.bias.data = self.patch_embedding.bias.data
|
181 |
+
del self.patch_embedding
|
182 |
+
self.patch_embedding = linear_patch_embedding
|
183 |
+
|
184 |
+
def forward(
|
185 |
+
self,
|
186 |
+
packed_pixel_values: torch.FloatTensor,
|
187 |
+
packed_flattened_position_ids: torch.LongTensor
|
188 |
+
) -> torch.Tensor:
|
189 |
+
|
190 |
+
patch_embeds = self.patch_embedding(packed_pixel_values)
|
191 |
+
if not self.config.rope:
|
192 |
+
embeddings = patch_embeds + self.position_embedding(packed_flattened_position_ids)
|
193 |
+
else:
|
194 |
+
embeddings = patch_embeds
|
195 |
+
return embeddings
|
196 |
+
|
197 |
+
|
198 |
+
class SiglipFlashAttention2(SiglipAttention):
|
199 |
+
def __init__(self, *args, **kwargs):
|
200 |
+
super().__init__(*args, **kwargs)
|
201 |
+
|
202 |
+
def forward(
|
203 |
+
self,
|
204 |
+
hidden_states: torch.Tensor,
|
205 |
+
cu_seqlens: torch.IntTensor,
|
206 |
+
max_seqlen: int,
|
207 |
+
cos_h: torch.Tensor = None,
|
208 |
+
sin_h: torch.Tensor = None,
|
209 |
+
cos_w: torch.Tensor = None,
|
210 |
+
sin_w: torch.Tensor = None,
|
211 |
+
**kwargs,
|
212 |
+
) -> torch.Tensor:
|
213 |
+
|
214 |
+
total_q_len, _ = hidden_states.size()
|
215 |
+
|
216 |
+
query_states = self.q_proj(hidden_states)
|
217 |
+
key_states = self.k_proj(hidden_states)
|
218 |
+
value_states = self.v_proj(hidden_states)
|
219 |
+
|
220 |
+
query_states = query_states.view(total_q_len, self.num_heads, self.head_dim)
|
221 |
+
key_states = key_states.view(total_q_len, self.num_heads, self.head_dim)
|
222 |
+
value_states = value_states.view(total_q_len, self.num_heads, self.head_dim)
|
223 |
+
|
224 |
+
if self.config.rope:
|
225 |
+
qh, qw = query_states[:, :, :self.head_dim // 2], query_states[:, :, self.head_dim // 2:]
|
226 |
+
kh, kw = key_states[:, :, :self.head_dim // 2], key_states[:, :, self.head_dim // 2:]
|
227 |
+
qh, kh = apply_rotary_pos_emb(qh, kh, cos_h, sin_h)
|
228 |
+
qw, kw = apply_rotary_pos_emb(qw, kw, cos_w, sin_w)
|
229 |
+
query_states = torch.cat([qh, qw], dim=-1)
|
230 |
+
key_states = torch.cat([kh, kw], dim=-1)
|
231 |
+
|
232 |
+
attn_output = flash_attn_varlen_func(
|
233 |
+
query_states.to(torch.bfloat16),
|
234 |
+
key_states.to(torch.bfloat16),
|
235 |
+
value_states.to(torch.bfloat16),
|
236 |
+
cu_seqlens_q=cu_seqlens,
|
237 |
+
cu_seqlens_k=cu_seqlens,
|
238 |
+
max_seqlen_q=max_seqlen,
|
239 |
+
max_seqlen_k=max_seqlen,
|
240 |
+
causal=False,
|
241 |
+
)
|
242 |
+
|
243 |
+
attn_output = self.out_proj(attn_output.reshape(total_q_len, -1))
|
244 |
+
return attn_output
|
245 |
+
|
246 |
+
|
247 |
+
class SiglipMLP(nn.Module):
|
248 |
+
def __init__(self, config):
|
249 |
+
super().__init__()
|
250 |
+
self.config = config
|
251 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
252 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
253 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
254 |
+
|
255 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
256 |
+
hidden_states = self.fc1(hidden_states)
|
257 |
+
hidden_states = self.activation_fn(hidden_states)
|
258 |
+
hidden_states = self.fc2(hidden_states)
|
259 |
+
return hidden_states
|
260 |
+
|
261 |
+
|
262 |
+
class SiglipEncoderLayer(nn.Module):
|
263 |
+
def __init__(self, config: SiglipVisionConfig):
|
264 |
+
super().__init__()
|
265 |
+
self.embed_dim = config.hidden_size
|
266 |
+
self.self_attn = SiglipFlashAttention2(config)
|
267 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
268 |
+
self.mlp = SiglipMLP(config)
|
269 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
270 |
+
|
271 |
+
def forward(
|
272 |
+
self,
|
273 |
+
hidden_states: torch.Tensor,
|
274 |
+
cu_seqlens: torch.IntTensor,
|
275 |
+
max_seqlen: int,
|
276 |
+
cos_h: torch.Tensor = None,
|
277 |
+
sin_h: torch.Tensor = None,
|
278 |
+
cos_w: torch.Tensor = None,
|
279 |
+
sin_w: torch.Tensor = None
|
280 |
+
) -> torch.Tensor:
|
281 |
+
residual = hidden_states
|
282 |
+
|
283 |
+
hidden_states = self.layer_norm1(hidden_states)
|
284 |
+
hidden_states = self.self_attn(
|
285 |
+
hidden_states=hidden_states,
|
286 |
+
cu_seqlens=cu_seqlens,
|
287 |
+
max_seqlen=max_seqlen,
|
288 |
+
cos_h=cos_h,
|
289 |
+
sin_h=sin_h,
|
290 |
+
cos_w=cos_w,
|
291 |
+
sin_w=sin_w
|
292 |
+
)
|
293 |
+
hidden_states = residual + hidden_states
|
294 |
+
|
295 |
+
residual = hidden_states
|
296 |
+
hidden_states = self.layer_norm2(hidden_states)
|
297 |
+
hidden_states = self.mlp(hidden_states)
|
298 |
+
hidden_states = residual + hidden_states
|
299 |
+
|
300 |
+
return hidden_states
|
301 |
+
|
302 |
+
|
303 |
+
class SiglipEncoder(nn.Module):
|
304 |
+
def __init__(self, config: SiglipVisionConfig):
|
305 |
+
super().__init__()
|
306 |
+
self.config = config
|
307 |
+
self.layers = nn.ModuleList(
|
308 |
+
[SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]
|
309 |
+
)
|
310 |
+
|
311 |
+
def forward(
|
312 |
+
self,
|
313 |
+
inputs_embeds: torch.Tensor,
|
314 |
+
cu_seqlens: torch.IntTensor,
|
315 |
+
max_seqlen: int,
|
316 |
+
cos_h: torch.Tensor = None,
|
317 |
+
sin_h: torch.Tensor = None,
|
318 |
+
cos_w: torch.Tensor = None,
|
319 |
+
sin_w: torch.Tensor = None,
|
320 |
+
) -> torch.Tensor:
|
321 |
+
|
322 |
+
hidden_states = inputs_embeds
|
323 |
+
for encoder_layer in self.layers:
|
324 |
+
hidden_states = encoder_layer(hidden_states, cu_seqlens, max_seqlen,
|
325 |
+
cos_h=cos_h, sin_h=sin_h, cos_w=cos_w, sin_w=sin_w)
|
326 |
+
|
327 |
+
return hidden_states
|
328 |
+
|
329 |
+
|
330 |
+
class SiglipVisionTransformer(nn.Module):
|
331 |
+
def __init__(self, config: SiglipVisionConfig):
|
332 |
+
super().__init__()
|
333 |
+
self.config = config
|
334 |
+
embed_dim = config.hidden_size
|
335 |
+
|
336 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
337 |
+
if config.rope:
|
338 |
+
max_size = config.image_size // config.patch_size
|
339 |
+
dim_head = config.hidden_size // config.num_attention_heads
|
340 |
+
self.rope = RotaryEmbedding2D(dim_head // 2, max_size, max_size)
|
341 |
+
|
342 |
+
self.encoder = SiglipEncoder(config)
|
343 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
344 |
+
|
345 |
+
def forward(
|
346 |
+
self,
|
347 |
+
packed_pixel_values: torch.Tensor,
|
348 |
+
packed_flattened_position_ids: torch.LongTensor,
|
349 |
+
cu_seqlens: torch.IntTensor,
|
350 |
+
max_seqlen: int,
|
351 |
+
) -> torch.Tensor:
|
352 |
+
hidden_states = self.embeddings(
|
353 |
+
packed_pixel_values=packed_pixel_values,
|
354 |
+
packed_flattened_position_ids=packed_flattened_position_ids
|
355 |
+
)
|
356 |
+
|
357 |
+
extra_inputs = {}
|
358 |
+
if self.config.rope:
|
359 |
+
extra_inputs.update(
|
360 |
+
cos_h = self.rope.cos_h[packed_flattened_position_ids],
|
361 |
+
sin_h = self.rope.sin_h[packed_flattened_position_ids],
|
362 |
+
cos_w = self.rope.cos_w[packed_flattened_position_ids],
|
363 |
+
sin_w = self.rope.sin_w[packed_flattened_position_ids]
|
364 |
+
)
|
365 |
+
|
366 |
+
last_hidden_state = self.encoder(
|
367 |
+
inputs_embeds=hidden_states, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen,
|
368 |
+
**extra_inputs
|
369 |
+
)
|
370 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
371 |
+
return last_hidden_state
|
372 |
+
|
373 |
+
|
374 |
+
class SiglipVisionModel(SiglipPreTrainedModel):
|
375 |
+
config_class = SiglipVisionConfig
|
376 |
+
main_input_name = "packed_pixel_values"
|
377 |
+
|
378 |
+
def __init__(self, config: SiglipVisionConfig):
|
379 |
+
super().__init__(config)
|
380 |
+
|
381 |
+
self.vision_model = SiglipVisionTransformer(config)
|
382 |
+
|
383 |
+
# Initialize weights and apply final processing
|
384 |
+
self.post_init()
|
385 |
+
|
386 |
+
def get_input_embeddings(self) -> nn.Module:
|
387 |
+
return self.vision_model.embeddings.patch_embedding
|
388 |
+
|
389 |
+
def forward(
|
390 |
+
self,
|
391 |
+
packed_pixel_values: torch.Tensor,
|
392 |
+
packed_flattened_position_ids: torch.LongTensor,
|
393 |
+
cu_seqlens: torch.IntTensor,
|
394 |
+
max_seqlen: int,
|
395 |
+
) -> torch.Tensor:
|
396 |
+
|
397 |
+
return self.vision_model(
|
398 |
+
packed_pixel_values=packed_pixel_values,
|
399 |
+
packed_flattened_position_ids=packed_flattened_position_ids,
|
400 |
+
cu_seqlens=cu_seqlens,
|
401 |
+
max_seqlen=max_seqlen,
|
402 |
+
)
|
modeling/qwen2/__init__.py
CHANGED
@@ -1,68 +1,68 @@
|
|
1 |
-
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
from typing import TYPE_CHECKING
|
5 |
-
|
6 |
-
from transformers.utils import (
|
7 |
-
OptionalDependencyNotAvailable,
|
8 |
-
_LazyModule,
|
9 |
-
is_tokenizers_available,
|
10 |
-
is_torch_available,
|
11 |
-
)
|
12 |
-
|
13 |
-
|
14 |
-
_import_structure = {
|
15 |
-
"configuration_qwen2": ["Qwen2Config"],
|
16 |
-
"tokenization_qwen2": ["Qwen2Tokenizer"],
|
17 |
-
}
|
18 |
-
|
19 |
-
try:
|
20 |
-
if not is_tokenizers_available():
|
21 |
-
raise OptionalDependencyNotAvailable()
|
22 |
-
except OptionalDependencyNotAvailable:
|
23 |
-
pass
|
24 |
-
else:
|
25 |
-
_import_structure["tokenization_qwen2_fast"] = ["Qwen2TokenizerFast"]
|
26 |
-
|
27 |
-
try:
|
28 |
-
if not is_torch_available():
|
29 |
-
raise OptionalDependencyNotAvailable()
|
30 |
-
except OptionalDependencyNotAvailable:
|
31 |
-
pass
|
32 |
-
else:
|
33 |
-
_import_structure["modeling_qwen2"] = [
|
34 |
-
"Qwen2ForCausalLM",
|
35 |
-
"Qwen2Model",
|
36 |
-
"Qwen2PreTrainedModel",
|
37 |
-
]
|
38 |
-
|
39 |
-
|
40 |
-
if TYPE_CHECKING:
|
41 |
-
from .configuration_qwen2 import Qwen2Config
|
42 |
-
from .tokenization_qwen2 import Qwen2Tokenizer
|
43 |
-
|
44 |
-
try:
|
45 |
-
if not is_tokenizers_available():
|
46 |
-
raise OptionalDependencyNotAvailable()
|
47 |
-
except OptionalDependencyNotAvailable:
|
48 |
-
pass
|
49 |
-
else:
|
50 |
-
from .tokenization_qwen2_fast import Qwen2TokenizerFast
|
51 |
-
|
52 |
-
try:
|
53 |
-
if not is_torch_available():
|
54 |
-
raise OptionalDependencyNotAvailable()
|
55 |
-
except OptionalDependencyNotAvailable:
|
56 |
-
pass
|
57 |
-
else:
|
58 |
-
from .modeling_qwen2 import (
|
59 |
-
Qwen2ForCausalLM,
|
60 |
-
Qwen2Model,
|
61 |
-
Qwen2PreTrainedModel,
|
62 |
-
)
|
63 |
-
|
64 |
-
|
65 |
-
else:
|
66 |
-
import sys
|
67 |
-
|
68 |
-
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
|
|
1 |
+
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
from typing import TYPE_CHECKING
|
5 |
+
|
6 |
+
from transformers.utils import (
|
7 |
+
OptionalDependencyNotAvailable,
|
8 |
+
_LazyModule,
|
9 |
+
is_tokenizers_available,
|
10 |
+
is_torch_available,
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
_import_structure = {
|
15 |
+
"configuration_qwen2": ["Qwen2Config"],
|
16 |
+
"tokenization_qwen2": ["Qwen2Tokenizer"],
|
17 |
+
}
|
18 |
+
|
19 |
+
try:
|
20 |
+
if not is_tokenizers_available():
|
21 |
+
raise OptionalDependencyNotAvailable()
|
22 |
+
except OptionalDependencyNotAvailable:
|
23 |
+
pass
|
24 |
+
else:
|
25 |
+
_import_structure["tokenization_qwen2_fast"] = ["Qwen2TokenizerFast"]
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_torch_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["modeling_qwen2"] = [
|
34 |
+
"Qwen2ForCausalLM",
|
35 |
+
"Qwen2Model",
|
36 |
+
"Qwen2PreTrainedModel",
|
37 |
+
]
|
38 |
+
|
39 |
+
|
40 |
+
if TYPE_CHECKING:
|
41 |
+
from .configuration_qwen2 import Qwen2Config
|
42 |
+
from .tokenization_qwen2 import Qwen2Tokenizer
|
43 |
+
|
44 |
+
try:
|
45 |
+
if not is_tokenizers_available():
|
46 |
+
raise OptionalDependencyNotAvailable()
|
47 |
+
except OptionalDependencyNotAvailable:
|
48 |
+
pass
|
49 |
+
else:
|
50 |
+
from .tokenization_qwen2_fast import Qwen2TokenizerFast
|
51 |
+
|
52 |
+
try:
|
53 |
+
if not is_torch_available():
|
54 |
+
raise OptionalDependencyNotAvailable()
|
55 |
+
except OptionalDependencyNotAvailable:
|
56 |
+
pass
|
57 |
+
else:
|
58 |
+
from .modeling_qwen2 import (
|
59 |
+
Qwen2ForCausalLM,
|
60 |
+
Qwen2Model,
|
61 |
+
Qwen2PreTrainedModel,
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
else:
|
66 |
+
import sys
|
67 |
+
|
68 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
modeling/qwen2/configuration_qwen2.py
CHANGED
@@ -1,179 +1,179 @@
|
|
1 |
-
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""Qwen2 model configuration"""
|
5 |
-
|
6 |
-
from transformers.configuration_utils import PretrainedConfig
|
7 |
-
from transformers.modeling_rope_utils import rope_config_validation
|
8 |
-
from transformers.utils import logging
|
9 |
-
|
10 |
-
|
11 |
-
logger = logging.get_logger(__name__)
|
12 |
-
|
13 |
-
|
14 |
-
class Qwen2Config(PretrainedConfig):
|
15 |
-
r"""
|
16 |
-
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
17 |
-
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
18 |
-
with the defaults will yield a similar configuration to that of
|
19 |
-
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
20 |
-
|
21 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
22 |
-
documentation from [`PretrainedConfig`] for more information.
|
23 |
-
|
24 |
-
|
25 |
-
Args:
|
26 |
-
vocab_size (`int`, *optional*, defaults to 151936):
|
27 |
-
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
28 |
-
`inputs_ids` passed when calling [`Qwen2Model`]
|
29 |
-
hidden_size (`int`, *optional*, defaults to 4096):
|
30 |
-
Dimension of the hidden representations.
|
31 |
-
intermediate_size (`int`, *optional*, defaults to 22016):
|
32 |
-
Dimension of the MLP representations.
|
33 |
-
num_hidden_layers (`int`, *optional*, defaults to 32):
|
34 |
-
Number of hidden layers in the Transformer encoder.
|
35 |
-
num_attention_heads (`int`, *optional*, defaults to 32):
|
36 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
-
num_key_value_heads (`int`, *optional*, defaults to 32):
|
38 |
-
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
39 |
-
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
40 |
-
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
41 |
-
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
42 |
-
by meanpooling all the original heads within that group. For more details checkout [this
|
43 |
-
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
44 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
45 |
-
The non-linear activation function (function or string) in the decoder.
|
46 |
-
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
47 |
-
The maximum sequence length that this model might ever be used with.
|
48 |
-
initializer_range (`float`, *optional*, defaults to 0.02):
|
49 |
-
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
50 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
51 |
-
The epsilon used by the rms normalization layers.
|
52 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
53 |
-
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
54 |
-
relevant if `config.is_decoder=True`.
|
55 |
-
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
56 |
-
Whether the model's input and output word embeddings should be tied.
|
57 |
-
rope_theta (`float`, *optional*, defaults to 10000.0):
|
58 |
-
The base period of the RoPE embeddings.
|
59 |
-
rope_scaling (`Dict`, *optional*):
|
60 |
-
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
61 |
-
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
62 |
-
accordingly.
|
63 |
-
Expected contents:
|
64 |
-
`rope_type` (`str`):
|
65 |
-
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
66 |
-
'llama3'], with 'default' being the original RoPE implementation.
|
67 |
-
`factor` (`float`, *optional*):
|
68 |
-
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
69 |
-
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
70 |
-
original maximum pre-trained length.
|
71 |
-
`original_max_position_embeddings` (`int`, *optional*):
|
72 |
-
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
73 |
-
pretraining.
|
74 |
-
`attention_factor` (`float`, *optional*):
|
75 |
-
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
76 |
-
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
77 |
-
`factor` field to infer the suggested value.
|
78 |
-
`beta_fast` (`float`, *optional*):
|
79 |
-
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
80 |
-
ramp function. If unspecified, it defaults to 32.
|
81 |
-
`beta_slow` (`float`, *optional*):
|
82 |
-
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
83 |
-
ramp function. If unspecified, it defaults to 1.
|
84 |
-
`short_factor` (`List[float]`, *optional*):
|
85 |
-
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
86 |
-
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
87 |
-
size divided by the number of attention heads divided by 2
|
88 |
-
`long_factor` (`List[float]`, *optional*):
|
89 |
-
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
90 |
-
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
91 |
-
size divided by the number of attention heads divided by 2
|
92 |
-
`low_freq_factor` (`float`, *optional*):
|
93 |
-
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
94 |
-
`high_freq_factor` (`float`, *optional*):
|
95 |
-
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
96 |
-
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
97 |
-
Whether to use sliding window attention.
|
98 |
-
sliding_window (`int`, *optional*, defaults to 4096):
|
99 |
-
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
100 |
-
max_window_layers (`int`, *optional*, defaults to 28):
|
101 |
-
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
102 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
103 |
-
The dropout ratio for the attention probabilities.
|
104 |
-
|
105 |
-
```python
|
106 |
-
>>> from transformers import Qwen2Model, Qwen2Config
|
107 |
-
|
108 |
-
>>> # Initializing a Qwen2 style configuration
|
109 |
-
>>> configuration = Qwen2Config()
|
110 |
-
|
111 |
-
>>> # Initializing a model from the Qwen2-7B style configuration
|
112 |
-
>>> model = Qwen2Model(configuration)
|
113 |
-
|
114 |
-
>>> # Accessing the model configuration
|
115 |
-
>>> configuration = model.config
|
116 |
-
```"""
|
117 |
-
|
118 |
-
model_type = "qwen2"
|
119 |
-
keys_to_ignore_at_inference = ["past_key_values"]
|
120 |
-
|
121 |
-
def __init__(
|
122 |
-
self,
|
123 |
-
vocab_size=151936,
|
124 |
-
hidden_size=4096,
|
125 |
-
intermediate_size=22016,
|
126 |
-
num_hidden_layers=32,
|
127 |
-
num_attention_heads=32,
|
128 |
-
num_key_value_heads=32,
|
129 |
-
hidden_act="silu",
|
130 |
-
max_position_embeddings=32768,
|
131 |
-
initializer_range=0.02,
|
132 |
-
rms_norm_eps=1e-6,
|
133 |
-
use_cache=True,
|
134 |
-
tie_word_embeddings=False,
|
135 |
-
rope_theta=10000.0,
|
136 |
-
rope_scaling=None,
|
137 |
-
use_sliding_window=False,
|
138 |
-
sliding_window=4096,
|
139 |
-
max_window_layers=28,
|
140 |
-
attention_dropout=0.0,
|
141 |
-
is_causal=True,
|
142 |
-
_attn_implementation="flash_attention_2",
|
143 |
-
**kwargs,
|
144 |
-
):
|
145 |
-
self.vocab_size = vocab_size
|
146 |
-
self.max_position_embeddings = max_position_embeddings
|
147 |
-
self.hidden_size = hidden_size
|
148 |
-
self.intermediate_size = intermediate_size
|
149 |
-
self.num_hidden_layers = num_hidden_layers
|
150 |
-
self.num_attention_heads = num_attention_heads
|
151 |
-
self.use_sliding_window = use_sliding_window
|
152 |
-
self.sliding_window = sliding_window if use_sliding_window else None
|
153 |
-
self.max_window_layers = max_window_layers
|
154 |
-
|
155 |
-
# for backward compatibility
|
156 |
-
if num_key_value_heads is None:
|
157 |
-
num_key_value_heads = num_attention_heads
|
158 |
-
|
159 |
-
self.num_key_value_heads = num_key_value_heads
|
160 |
-
self.hidden_act = hidden_act
|
161 |
-
self.initializer_range = initializer_range
|
162 |
-
self.rms_norm_eps = rms_norm_eps
|
163 |
-
self.use_cache = use_cache
|
164 |
-
self.rope_theta = rope_theta
|
165 |
-
self.rope_scaling = rope_scaling
|
166 |
-
self.attention_dropout = attention_dropout
|
167 |
-
self.is_causal = is_causal
|
168 |
-
self._attn_implementation = _attn_implementation
|
169 |
-
|
170 |
-
# Validate the correctness of rotary position embeddings parameters
|
171 |
-
# BC: if there is a 'type' field, move it to 'rope_type'.
|
172 |
-
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
173 |
-
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
174 |
-
rope_config_validation(self)
|
175 |
-
|
176 |
-
super().__init__(
|
177 |
-
tie_word_embeddings=tie_word_embeddings,
|
178 |
-
**kwargs,
|
179 |
-
)
|
|
|
1 |
+
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Qwen2 model configuration"""
|
5 |
+
|
6 |
+
from transformers.configuration_utils import PretrainedConfig
|
7 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
8 |
+
from transformers.utils import logging
|
9 |
+
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
class Qwen2Config(PretrainedConfig):
|
15 |
+
r"""
|
16 |
+
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
17 |
+
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
18 |
+
with the defaults will yield a similar configuration to that of
|
19 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
20 |
+
|
21 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
22 |
+
documentation from [`PretrainedConfig`] for more information.
|
23 |
+
|
24 |
+
|
25 |
+
Args:
|
26 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
27 |
+
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
28 |
+
`inputs_ids` passed when calling [`Qwen2Model`]
|
29 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
30 |
+
Dimension of the hidden representations.
|
31 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
32 |
+
Dimension of the MLP representations.
|
33 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
34 |
+
Number of hidden layers in the Transformer encoder.
|
35 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
38 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
39 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
40 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
41 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
42 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
43 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
44 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
45 |
+
The non-linear activation function (function or string) in the decoder.
|
46 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
47 |
+
The maximum sequence length that this model might ever be used with.
|
48 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
49 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
50 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
51 |
+
The epsilon used by the rms normalization layers.
|
52 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
53 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
54 |
+
relevant if `config.is_decoder=True`.
|
55 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
56 |
+
Whether the model's input and output word embeddings should be tied.
|
57 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
58 |
+
The base period of the RoPE embeddings.
|
59 |
+
rope_scaling (`Dict`, *optional*):
|
60 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
61 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
62 |
+
accordingly.
|
63 |
+
Expected contents:
|
64 |
+
`rope_type` (`str`):
|
65 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
66 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
67 |
+
`factor` (`float`, *optional*):
|
68 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
69 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
70 |
+
original maximum pre-trained length.
|
71 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
72 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
73 |
+
pretraining.
|
74 |
+
`attention_factor` (`float`, *optional*):
|
75 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
76 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
77 |
+
`factor` field to infer the suggested value.
|
78 |
+
`beta_fast` (`float`, *optional*):
|
79 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
80 |
+
ramp function. If unspecified, it defaults to 32.
|
81 |
+
`beta_slow` (`float`, *optional*):
|
82 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
83 |
+
ramp function. If unspecified, it defaults to 1.
|
84 |
+
`short_factor` (`List[float]`, *optional*):
|
85 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
86 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
87 |
+
size divided by the number of attention heads divided by 2
|
88 |
+
`long_factor` (`List[float]`, *optional*):
|
89 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
90 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
91 |
+
size divided by the number of attention heads divided by 2
|
92 |
+
`low_freq_factor` (`float`, *optional*):
|
93 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
94 |
+
`high_freq_factor` (`float`, *optional*):
|
95 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
96 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
97 |
+
Whether to use sliding window attention.
|
98 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
99 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
100 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
101 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
102 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
103 |
+
The dropout ratio for the attention probabilities.
|
104 |
+
|
105 |
+
```python
|
106 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
107 |
+
|
108 |
+
>>> # Initializing a Qwen2 style configuration
|
109 |
+
>>> configuration = Qwen2Config()
|
110 |
+
|
111 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
112 |
+
>>> model = Qwen2Model(configuration)
|
113 |
+
|
114 |
+
>>> # Accessing the model configuration
|
115 |
+
>>> configuration = model.config
|
116 |
+
```"""
|
117 |
+
|
118 |
+
model_type = "qwen2"
|
119 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
vocab_size=151936,
|
124 |
+
hidden_size=4096,
|
125 |
+
intermediate_size=22016,
|
126 |
+
num_hidden_layers=32,
|
127 |
+
num_attention_heads=32,
|
128 |
+
num_key_value_heads=32,
|
129 |
+
hidden_act="silu",
|
130 |
+
max_position_embeddings=32768,
|
131 |
+
initializer_range=0.02,
|
132 |
+
rms_norm_eps=1e-6,
|
133 |
+
use_cache=True,
|
134 |
+
tie_word_embeddings=False,
|
135 |
+
rope_theta=10000.0,
|
136 |
+
rope_scaling=None,
|
137 |
+
use_sliding_window=False,
|
138 |
+
sliding_window=4096,
|
139 |
+
max_window_layers=28,
|
140 |
+
attention_dropout=0.0,
|
141 |
+
is_causal=True,
|
142 |
+
_attn_implementation="flash_attention_2",
|
143 |
+
**kwargs,
|
144 |
+
):
|
145 |
+
self.vocab_size = vocab_size
|
146 |
+
self.max_position_embeddings = max_position_embeddings
|
147 |
+
self.hidden_size = hidden_size
|
148 |
+
self.intermediate_size = intermediate_size
|
149 |
+
self.num_hidden_layers = num_hidden_layers
|
150 |
+
self.num_attention_heads = num_attention_heads
|
151 |
+
self.use_sliding_window = use_sliding_window
|
152 |
+
self.sliding_window = sliding_window if use_sliding_window else None
|
153 |
+
self.max_window_layers = max_window_layers
|
154 |
+
|
155 |
+
# for backward compatibility
|
156 |
+
if num_key_value_heads is None:
|
157 |
+
num_key_value_heads = num_attention_heads
|
158 |
+
|
159 |
+
self.num_key_value_heads = num_key_value_heads
|
160 |
+
self.hidden_act = hidden_act
|
161 |
+
self.initializer_range = initializer_range
|
162 |
+
self.rms_norm_eps = rms_norm_eps
|
163 |
+
self.use_cache = use_cache
|
164 |
+
self.rope_theta = rope_theta
|
165 |
+
self.rope_scaling = rope_scaling
|
166 |
+
self.attention_dropout = attention_dropout
|
167 |
+
self.is_causal = is_causal
|
168 |
+
self._attn_implementation = _attn_implementation
|
169 |
+
|
170 |
+
# Validate the correctness of rotary position embeddings parameters
|
171 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
172 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
173 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
174 |
+
rope_config_validation(self)
|
175 |
+
|
176 |
+
super().__init__(
|
177 |
+
tie_word_embeddings=tie_word_embeddings,
|
178 |
+
**kwargs,
|
179 |
+
)
|
modeling/qwen2/modeling_qwen2.py
CHANGED
@@ -1,929 +1,929 @@
|
|
1 |
-
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""PyTorch Qwen2 model."""
|
5 |
-
|
6 |
-
import math
|
7 |
-
from typing import List, Optional, Tuple, Union
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.utils.checkpoint
|
11 |
-
from torch import nn
|
12 |
-
|
13 |
-
from transformers.activations import ACT2FN
|
14 |
-
from transformers.cache_utils import Cache, DynamicCache
|
15 |
-
from transformers.generation import GenerationMixin
|
16 |
-
from transformers.modeling_outputs import (
|
17 |
-
BaseModelOutputWithPast,
|
18 |
-
CausalLMOutputWithPast,
|
19 |
-
)
|
20 |
-
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
21 |
-
from transformers.modeling_utils import PreTrainedModel
|
22 |
-
from transformers.utils import (
|
23 |
-
add_start_docstrings,
|
24 |
-
add_start_docstrings_to_model_forward,
|
25 |
-
is_flash_attn_2_available,
|
26 |
-
is_flash_attn_greater_or_equal_2_10,
|
27 |
-
logging,
|
28 |
-
replace_return_docstrings,
|
29 |
-
)
|
30 |
-
from .configuration_qwen2 import Qwen2Config
|
31 |
-
|
32 |
-
|
33 |
-
if is_flash_attn_2_available():
|
34 |
-
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
35 |
-
|
36 |
-
|
37 |
-
logger = logging.get_logger(__name__)
|
38 |
-
|
39 |
-
|
40 |
-
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B"
|
41 |
-
_CONFIG_FOR_DOC = "Qwen2Config"
|
42 |
-
|
43 |
-
|
44 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
|
45 |
-
class Qwen2RMSNorm(nn.Module):
|
46 |
-
def __init__(self, hidden_size, eps=1e-6):
|
47 |
-
"""
|
48 |
-
Qwen2RMSNorm is equivalent to T5LayerNorm
|
49 |
-
"""
|
50 |
-
super().__init__()
|
51 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
52 |
-
self.variance_epsilon = eps
|
53 |
-
|
54 |
-
def forward(self, hidden_states):
|
55 |
-
input_dtype = hidden_states.dtype
|
56 |
-
hidden_states = hidden_states.to(torch.float32)
|
57 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
58 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
59 |
-
return self.weight * hidden_states.to(input_dtype)
|
60 |
-
|
61 |
-
def extra_repr(self):
|
62 |
-
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
63 |
-
|
64 |
-
|
65 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Qwen2
|
66 |
-
class Qwen2RotaryEmbedding(nn.Module):
|
67 |
-
def __init__(
|
68 |
-
self,
|
69 |
-
dim=None,
|
70 |
-
max_position_embeddings=2048,
|
71 |
-
base=10000,
|
72 |
-
device=None,
|
73 |
-
scaling_factor=1.0,
|
74 |
-
rope_type="default",
|
75 |
-
config: Optional[Qwen2Config] = None,
|
76 |
-
):
|
77 |
-
super().__init__()
|
78 |
-
# TODO (joao): remove the `if` below, only used for BC
|
79 |
-
self.rope_kwargs = {}
|
80 |
-
if config is None:
|
81 |
-
logger.warning_once(
|
82 |
-
"`Qwen2RotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
83 |
-
"`config` argument. All other arguments will be removed in v4.46"
|
84 |
-
)
|
85 |
-
self.rope_kwargs = {
|
86 |
-
"rope_type": rope_type,
|
87 |
-
"factor": scaling_factor,
|
88 |
-
"dim": dim,
|
89 |
-
"base": base,
|
90 |
-
"max_position_embeddings": max_position_embeddings,
|
91 |
-
}
|
92 |
-
self.rope_type = rope_type
|
93 |
-
self.max_seq_len_cached = max_position_embeddings
|
94 |
-
self.original_max_seq_len = max_position_embeddings
|
95 |
-
else:
|
96 |
-
# BC: "rope_type" was originally "type"
|
97 |
-
if config.rope_scaling is not None:
|
98 |
-
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
99 |
-
else:
|
100 |
-
self.rope_type = "default"
|
101 |
-
self.max_seq_len_cached = config.max_position_embeddings
|
102 |
-
self.original_max_seq_len = config.max_position_embeddings
|
103 |
-
|
104 |
-
self.config = config
|
105 |
-
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
106 |
-
|
107 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
108 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
109 |
-
self.original_inv_freq = self.inv_freq
|
110 |
-
|
111 |
-
def _dynamic_frequency_update(self, position_ids, device):
|
112 |
-
"""
|
113 |
-
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
114 |
-
1 - growing beyond the cached sequence length (allow scaling)
|
115 |
-
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
116 |
-
"""
|
117 |
-
seq_len = torch.max(position_ids) + 1
|
118 |
-
if seq_len > self.max_seq_len_cached: # growth
|
119 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(
|
120 |
-
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
121 |
-
)
|
122 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
123 |
-
self.max_seq_len_cached = seq_len
|
124 |
-
|
125 |
-
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
126 |
-
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
127 |
-
self.max_seq_len_cached = self.original_max_seq_len
|
128 |
-
|
129 |
-
@torch.no_grad()
|
130 |
-
def forward(self, x, position_ids):
|
131 |
-
if "dynamic" in self.rope_type:
|
132 |
-
self._dynamic_frequency_update(position_ids, device=x.device)
|
133 |
-
|
134 |
-
# Core RoPE block
|
135 |
-
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
136 |
-
position_ids_expanded = position_ids[:, None, :].float()
|
137 |
-
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
138 |
-
device_type = x.device.type
|
139 |
-
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
140 |
-
with torch.autocast(device_type=device_type, enabled=False):
|
141 |
-
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
142 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
143 |
-
cos = emb.cos()
|
144 |
-
sin = emb.sin()
|
145 |
-
|
146 |
-
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
147 |
-
cos = cos * self.attention_scaling
|
148 |
-
sin = sin * self.attention_scaling
|
149 |
-
|
150 |
-
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
151 |
-
|
152 |
-
|
153 |
-
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
154 |
-
def rotate_half(x):
|
155 |
-
"""Rotates half the hidden dims of the input."""
|
156 |
-
x1 = x[..., : x.shape[-1] // 2]
|
157 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
158 |
-
return torch.cat((-x2, x1), dim=-1)
|
159 |
-
|
160 |
-
|
161 |
-
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
162 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
163 |
-
"""Applies Rotary Position Embedding to the query and key tensors.
|
164 |
-
|
165 |
-
Args:
|
166 |
-
q (`torch.Tensor`): The query tensor.
|
167 |
-
k (`torch.Tensor`): The key tensor.
|
168 |
-
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
169 |
-
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
170 |
-
position_ids (`torch.Tensor`, *optional*):
|
171 |
-
Deprecated and unused.
|
172 |
-
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
173 |
-
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
174 |
-
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
175 |
-
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
176 |
-
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
177 |
-
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
178 |
-
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
179 |
-
Returns:
|
180 |
-
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
181 |
-
"""
|
182 |
-
cos = cos.unsqueeze(unsqueeze_dim)
|
183 |
-
sin = sin.unsqueeze(unsqueeze_dim)
|
184 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
185 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
186 |
-
return q_embed, k_embed
|
187 |
-
|
188 |
-
|
189 |
-
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
|
190 |
-
class Qwen2MLP(nn.Module):
|
191 |
-
def __init__(self, config):
|
192 |
-
super().__init__()
|
193 |
-
self.hidden_size = config.hidden_size
|
194 |
-
self.intermediate_size = config.intermediate_size
|
195 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
196 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
197 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
198 |
-
self.act_fn = ACT2FN[config.hidden_act]
|
199 |
-
|
200 |
-
def forward(self, hidden_state):
|
201 |
-
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
202 |
-
|
203 |
-
|
204 |
-
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
205 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
206 |
-
"""
|
207 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
208 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
209 |
-
"""
|
210 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
211 |
-
if n_rep == 1:
|
212 |
-
return hidden_states
|
213 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
214 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
215 |
-
|
216 |
-
|
217 |
-
class Qwen2Attention(nn.Module):
|
218 |
-
"""
|
219 |
-
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
220 |
-
and "Generating Long Sequences with Sparse Transformers".
|
221 |
-
"""
|
222 |
-
|
223 |
-
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
|
224 |
-
super().__init__()
|
225 |
-
self.config = config
|
226 |
-
self.layer_idx = layer_idx
|
227 |
-
if layer_idx is None:
|
228 |
-
logger.warning_once(
|
229 |
-
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
230 |
-
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
231 |
-
"when creating this class."
|
232 |
-
)
|
233 |
-
|
234 |
-
self.hidden_size = config.hidden_size
|
235 |
-
self.num_heads = config.num_attention_heads
|
236 |
-
self.head_dim = self.hidden_size // self.num_heads
|
237 |
-
self.num_key_value_heads = config.num_key_value_heads
|
238 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
239 |
-
self.max_position_embeddings = config.max_position_embeddings
|
240 |
-
self.rope_theta = config.rope_theta
|
241 |
-
self.is_causal = config.is_causal
|
242 |
-
self.attention_dropout = config.attention_dropout
|
243 |
-
|
244 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
245 |
-
raise ValueError(
|
246 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
247 |
-
f" and `num_heads`: {self.num_heads})."
|
248 |
-
)
|
249 |
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
250 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
251 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
252 |
-
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
253 |
-
|
254 |
-
def forward(
|
255 |
-
self,
|
256 |
-
hidden_states: torch.Tensor,
|
257 |
-
attention_mask: Optional[torch.Tensor] = None,
|
258 |
-
position_ids: Optional[torch.LongTensor] = None,
|
259 |
-
past_key_value: Optional[Cache] = None,
|
260 |
-
output_attentions: bool = False,
|
261 |
-
use_cache: bool = False,
|
262 |
-
cache_position: Optional[torch.LongTensor] = None,
|
263 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
264 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
265 |
-
bsz, q_len, _ = hidden_states.size()
|
266 |
-
|
267 |
-
query_states = self.q_proj(hidden_states)
|
268 |
-
key_states = self.k_proj(hidden_states)
|
269 |
-
value_states = self.v_proj(hidden_states)
|
270 |
-
|
271 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
272 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
273 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
274 |
-
|
275 |
-
if position_embeddings is None:
|
276 |
-
logger.warning_once(
|
277 |
-
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
278 |
-
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
279 |
-
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
280 |
-
"removed and `position_embeddings` will be mandatory."
|
281 |
-
)
|
282 |
-
cos, sin = self.rotary_emb(value_states, position_ids)
|
283 |
-
else:
|
284 |
-
cos, sin = position_embeddings
|
285 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
286 |
-
|
287 |
-
if past_key_value is not None:
|
288 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
289 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
290 |
-
|
291 |
-
# repeat k/v heads if n_kv_heads < n_heads
|
292 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
293 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
294 |
-
|
295 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
296 |
-
if attention_mask is not None: # no matter the length, we just slice it
|
297 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
298 |
-
attn_weights = attn_weights + causal_mask
|
299 |
-
|
300 |
-
# upcast attention to fp32
|
301 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
302 |
-
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
303 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
304 |
-
|
305 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
306 |
-
raise ValueError(
|
307 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
308 |
-
f" {attn_output.size()}"
|
309 |
-
)
|
310 |
-
|
311 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
312 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
313 |
-
|
314 |
-
attn_output = self.o_proj(attn_output)
|
315 |
-
|
316 |
-
if not output_attentions:
|
317 |
-
attn_weights = None
|
318 |
-
|
319 |
-
return attn_output, attn_weights, past_key_value
|
320 |
-
|
321 |
-
|
322 |
-
class Qwen2FlashAttention2(Qwen2Attention):
|
323 |
-
"""
|
324 |
-
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
|
325 |
-
as the weights of the module stays untouched. The only required change would be on the forward pass
|
326 |
-
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
327 |
-
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
328 |
-
config.max_window_layers layers.
|
329 |
-
"""
|
330 |
-
|
331 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
332 |
-
def __init__(self, *args, **kwargs):
|
333 |
-
super().__init__(*args, **kwargs)
|
334 |
-
|
335 |
-
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
336 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
337 |
-
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
338 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
339 |
-
|
340 |
-
def forward(
|
341 |
-
self,
|
342 |
-
hidden_states: torch.Tensor,
|
343 |
-
attention_mask: Optional[torch.Tensor] = None,
|
344 |
-
position_ids: Optional[torch.LongTensor] = None,
|
345 |
-
past_key_value: Optional[Cache] = None,
|
346 |
-
output_attentions: bool = False,
|
347 |
-
use_cache: bool = False,
|
348 |
-
cache_position: Optional[torch.LongTensor] = None,
|
349 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
350 |
-
):
|
351 |
-
bsz, q_len, _ = hidden_states.size()
|
352 |
-
|
353 |
-
query_states = self.q_proj(hidden_states)
|
354 |
-
key_states = self.k_proj(hidden_states)
|
355 |
-
value_states = self.v_proj(hidden_states)
|
356 |
-
|
357 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
358 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
359 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
360 |
-
|
361 |
-
if position_embeddings is None:
|
362 |
-
logger.warning_once(
|
363 |
-
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
364 |
-
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
365 |
-
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
366 |
-
"removed and `position_embeddings` will be mandatory."
|
367 |
-
)
|
368 |
-
cos, sin = self.rotary_emb(value_states, position_ids)
|
369 |
-
else:
|
370 |
-
cos, sin = position_embeddings
|
371 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
372 |
-
|
373 |
-
if past_key_value is not None:
|
374 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
375 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
376 |
-
|
377 |
-
# repeat k/v heads if n_kv_heads < n_heads
|
378 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
379 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
380 |
-
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
381 |
-
|
382 |
-
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
383 |
-
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
384 |
-
# cast them back in float16 just to be sure everything works as expected.
|
385 |
-
input_dtype = query_states.dtype
|
386 |
-
if input_dtype == torch.float32:
|
387 |
-
if torch.is_autocast_enabled():
|
388 |
-
target_dtype = torch.get_autocast_gpu_dtype()
|
389 |
-
# Handle the case where the model is quantized
|
390 |
-
elif hasattr(self.config, "_pre_quantization_dtype"):
|
391 |
-
target_dtype = self.config._pre_quantization_dtype
|
392 |
-
else:
|
393 |
-
target_dtype = self.q_proj.weight.dtype
|
394 |
-
|
395 |
-
logger.warning_once(
|
396 |
-
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
397 |
-
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
398 |
-
f" {target_dtype}."
|
399 |
-
)
|
400 |
-
|
401 |
-
query_states = query_states.to(target_dtype)
|
402 |
-
key_states = key_states.to(target_dtype)
|
403 |
-
value_states = value_states.to(target_dtype)
|
404 |
-
|
405 |
-
# Reashape to the expected shape for Flash Attention
|
406 |
-
query_states = query_states.transpose(1, 2)
|
407 |
-
key_states = key_states.transpose(1, 2)
|
408 |
-
value_states = value_states.transpose(1, 2)
|
409 |
-
|
410 |
-
if (
|
411 |
-
self.config.use_sliding_window
|
412 |
-
and getattr(self.config, "sliding_window", None) is not None
|
413 |
-
and self.layer_idx >= self.config.max_window_layers
|
414 |
-
):
|
415 |
-
sliding_window = self.config.sliding_window
|
416 |
-
else:
|
417 |
-
sliding_window = None
|
418 |
-
|
419 |
-
attn_output = _flash_attention_forward(
|
420 |
-
query_states,
|
421 |
-
key_states,
|
422 |
-
value_states,
|
423 |
-
attention_mask,
|
424 |
-
q_len,
|
425 |
-
position_ids=position_ids,
|
426 |
-
dropout=dropout_rate,
|
427 |
-
sliding_window=sliding_window,
|
428 |
-
is_causal=self.is_causal,
|
429 |
-
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
430 |
-
)
|
431 |
-
|
432 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
433 |
-
attn_output = self.o_proj(attn_output)
|
434 |
-
|
435 |
-
if not output_attentions:
|
436 |
-
attn_weights = None
|
437 |
-
|
438 |
-
return attn_output, attn_weights, past_key_value
|
439 |
-
|
440 |
-
|
441 |
-
QWEN2_ATTENTION_CLASSES = {
|
442 |
-
"eager": Qwen2Attention,
|
443 |
-
"flash_attention_2": Qwen2FlashAttention2,
|
444 |
-
}
|
445 |
-
|
446 |
-
|
447 |
-
class Qwen2DecoderLayer(nn.Module):
|
448 |
-
def __init__(self, config: Qwen2Config, layer_idx: int):
|
449 |
-
super().__init__()
|
450 |
-
self.hidden_size = config.hidden_size
|
451 |
-
|
452 |
-
if config.sliding_window and config._attn_implementation != "flash_attention_2":
|
453 |
-
logger.warning_once(
|
454 |
-
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
455 |
-
"unexpected results may be encountered."
|
456 |
-
)
|
457 |
-
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
458 |
-
|
459 |
-
self.mlp = Qwen2MLP(config)
|
460 |
-
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
461 |
-
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
462 |
-
|
463 |
-
def forward(
|
464 |
-
self,
|
465 |
-
hidden_states: torch.Tensor,
|
466 |
-
attention_mask: Optional[torch.Tensor] = None,
|
467 |
-
position_ids: Optional[torch.LongTensor] = None,
|
468 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
469 |
-
output_attentions: Optional[bool] = False,
|
470 |
-
use_cache: Optional[bool] = False,
|
471 |
-
cache_position: Optional[torch.LongTensor] = None,
|
472 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
473 |
-
**kwargs,
|
474 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
475 |
-
"""
|
476 |
-
Args:
|
477 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
478 |
-
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
479 |
-
`(batch, sequence_length)` where padding elements are indicated by 0.
|
480 |
-
output_attentions (`bool`, *optional*):
|
481 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
482 |
-
returned tensors for more detail.
|
483 |
-
use_cache (`bool`, *optional*):
|
484 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
485 |
-
(see `past_key_values`).
|
486 |
-
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
487 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
488 |
-
Indices depicting the position of the input sequence tokens in the sequence.
|
489 |
-
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
490 |
-
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
491 |
-
with `head_dim` being the embedding dimension of each attention head.
|
492 |
-
kwargs (`dict`, *optional*):
|
493 |
-
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
494 |
-
into the model
|
495 |
-
"""
|
496 |
-
|
497 |
-
residual = hidden_states
|
498 |
-
|
499 |
-
hidden_states = self.input_layernorm(hidden_states)
|
500 |
-
|
501 |
-
# Self Attention
|
502 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
503 |
-
hidden_states=hidden_states,
|
504 |
-
attention_mask=attention_mask,
|
505 |
-
position_ids=position_ids,
|
506 |
-
past_key_value=past_key_value,
|
507 |
-
output_attentions=output_attentions,
|
508 |
-
use_cache=use_cache,
|
509 |
-
cache_position=cache_position,
|
510 |
-
position_embeddings=position_embeddings,
|
511 |
-
)
|
512 |
-
hidden_states = residual + hidden_states
|
513 |
-
|
514 |
-
# Fully Connected
|
515 |
-
residual = hidden_states
|
516 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
517 |
-
hidden_states = self.mlp(hidden_states)
|
518 |
-
hidden_states = residual + hidden_states
|
519 |
-
|
520 |
-
outputs = (hidden_states,)
|
521 |
-
|
522 |
-
if output_attentions:
|
523 |
-
outputs += (self_attn_weights,)
|
524 |
-
|
525 |
-
if use_cache:
|
526 |
-
outputs += (present_key_value,)
|
527 |
-
|
528 |
-
return outputs
|
529 |
-
|
530 |
-
|
531 |
-
QWEN2_START_DOCSTRING = r"""
|
532 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
533 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
534 |
-
etc.)
|
535 |
-
|
536 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
537 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
538 |
-
and behavior.
|
539 |
-
|
540 |
-
Parameters:
|
541 |
-
config ([`Qwen2Config`]):
|
542 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
543 |
-
load the weights associated with the model, only the configuration. Check out the
|
544 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
545 |
-
"""
|
546 |
-
|
547 |
-
|
548 |
-
@add_start_docstrings(
|
549 |
-
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
550 |
-
QWEN2_START_DOCSTRING,
|
551 |
-
)
|
552 |
-
class Qwen2PreTrainedModel(PreTrainedModel):
|
553 |
-
config_class = Qwen2Config
|
554 |
-
base_model_prefix = "model"
|
555 |
-
supports_gradient_checkpointing = True
|
556 |
-
_no_split_modules = ["Qwen2DecoderLayer"]
|
557 |
-
_skip_keys_device_placement = "past_key_values"
|
558 |
-
_supports_flash_attn_2 = True
|
559 |
-
_supports_cache_class = True
|
560 |
-
_supports_quantized_cache = True
|
561 |
-
_supports_static_cache = True
|
562 |
-
|
563 |
-
def _init_weights(self, module):
|
564 |
-
std = self.config.initializer_range
|
565 |
-
if isinstance(module, nn.Linear):
|
566 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
567 |
-
if module.bias is not None:
|
568 |
-
module.bias.data.zero_()
|
569 |
-
elif isinstance(module, nn.Embedding):
|
570 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
571 |
-
if module.padding_idx is not None:
|
572 |
-
module.weight.data[module.padding_idx].zero_()
|
573 |
-
|
574 |
-
|
575 |
-
QWEN2_INPUTS_DOCSTRING = r"""
|
576 |
-
Args:
|
577 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
578 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
579 |
-
it.
|
580 |
-
|
581 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
582 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
583 |
-
|
584 |
-
[What are input IDs?](../glossary#input-ids)
|
585 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
586 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
587 |
-
|
588 |
-
- 1 for tokens that are **not masked**,
|
589 |
-
- 0 for tokens that are **masked**.
|
590 |
-
|
591 |
-
[What are attention masks?](../glossary#attention-mask)
|
592 |
-
|
593 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
594 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
595 |
-
|
596 |
-
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
597 |
-
`past_key_values`).
|
598 |
-
|
599 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
600 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
601 |
-
information on the default strategy.
|
602 |
-
|
603 |
-
- 1 indicates the head is **not masked**,
|
604 |
-
- 0 indicates the head is **masked**.
|
605 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
606 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
607 |
-
config.n_positions - 1]`.
|
608 |
-
|
609 |
-
[What are position IDs?](../glossary#position-ids)
|
610 |
-
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
611 |
-
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
612 |
-
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
613 |
-
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
614 |
-
|
615 |
-
Two formats are allowed:
|
616 |
-
- a [`~cache_utils.Cache`] instance, see our
|
617 |
-
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
618 |
-
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
619 |
-
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
620 |
-
cache format.
|
621 |
-
|
622 |
-
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
623 |
-
legacy cache format will be returned.
|
624 |
-
|
625 |
-
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
626 |
-
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
627 |
-
of shape `(batch_size, sequence_length)`.
|
628 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
629 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
630 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
631 |
-
model's internal embedding lookup matrix.
|
632 |
-
use_cache (`bool`, *optional*):
|
633 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
634 |
-
`past_key_values`).
|
635 |
-
output_attentions (`bool`, *optional*):
|
636 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
637 |
-
tensors for more detail.
|
638 |
-
output_hidden_states (`bool`, *optional*):
|
639 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
640 |
-
more detail.
|
641 |
-
return_dict (`bool`, *optional*):
|
642 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
643 |
-
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
644 |
-
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
645 |
-
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
646 |
-
the complete sequence length.
|
647 |
-
"""
|
648 |
-
|
649 |
-
|
650 |
-
@add_start_docstrings(
|
651 |
-
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
652 |
-
QWEN2_START_DOCSTRING,
|
653 |
-
)
|
654 |
-
class Qwen2Model(Qwen2PreTrainedModel):
|
655 |
-
"""
|
656 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
657 |
-
|
658 |
-
Args:
|
659 |
-
config: Qwen2Config
|
660 |
-
"""
|
661 |
-
|
662 |
-
def __init__(self, config: Qwen2Config):
|
663 |
-
super().__init__(config)
|
664 |
-
self.padding_idx = config.pad_token_id
|
665 |
-
self.vocab_size = config.vocab_size
|
666 |
-
|
667 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
668 |
-
self.layers = nn.ModuleList(
|
669 |
-
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
670 |
-
)
|
671 |
-
self._attn_implementation = config._attn_implementation
|
672 |
-
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
673 |
-
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
674 |
-
|
675 |
-
self.gradient_checkpointing = False
|
676 |
-
# Initialize weights and apply final processing
|
677 |
-
self.post_init()
|
678 |
-
|
679 |
-
def get_input_embeddings(self):
|
680 |
-
return self.embed_tokens
|
681 |
-
|
682 |
-
def set_input_embeddings(self, value):
|
683 |
-
self.embed_tokens = value
|
684 |
-
|
685 |
-
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
686 |
-
def forward(
|
687 |
-
self,
|
688 |
-
input_ids: torch.LongTensor = None,
|
689 |
-
attention_mask: Optional[torch.Tensor] = None,
|
690 |
-
position_ids: Optional[torch.LongTensor] = None,
|
691 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
692 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
693 |
-
use_cache: Optional[bool] = None,
|
694 |
-
output_attentions: Optional[bool] = None,
|
695 |
-
output_hidden_states: Optional[bool] = None,
|
696 |
-
return_dict: Optional[bool] = None,
|
697 |
-
cache_position: Optional[torch.LongTensor] = None,
|
698 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
699 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
700 |
-
output_hidden_states = (
|
701 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
702 |
-
)
|
703 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
704 |
-
|
705 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
706 |
-
|
707 |
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
708 |
-
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
709 |
-
|
710 |
-
if self.gradient_checkpointing and self.training:
|
711 |
-
if use_cache:
|
712 |
-
logger.warning_once(
|
713 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
714 |
-
)
|
715 |
-
use_cache = False
|
716 |
-
|
717 |
-
# kept for BC (non `Cache` `past_key_values` inputs)
|
718 |
-
return_legacy_cache = False
|
719 |
-
if use_cache and not isinstance(past_key_values, Cache):
|
720 |
-
return_legacy_cache = True
|
721 |
-
if past_key_values is None:
|
722 |
-
past_key_values = DynamicCache()
|
723 |
-
else:
|
724 |
-
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
725 |
-
logger.warning_once(
|
726 |
-
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
727 |
-
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
728 |
-
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
729 |
-
)
|
730 |
-
|
731 |
-
if inputs_embeds is None:
|
732 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
733 |
-
|
734 |
-
if cache_position is None:
|
735 |
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
736 |
-
cache_position = torch.arange(
|
737 |
-
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
738 |
-
)
|
739 |
-
if position_ids is None:
|
740 |
-
position_ids = cache_position.unsqueeze(0)
|
741 |
-
|
742 |
-
if attention_mask is not None and 0.0 in attention_mask:
|
743 |
-
causal_mask = attention_mask
|
744 |
-
else:
|
745 |
-
causal_mask = None
|
746 |
-
|
747 |
-
hidden_states = inputs_embeds
|
748 |
-
# create position embeddings to be shared across the decoder layers
|
749 |
-
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
750 |
-
|
751 |
-
# decoder layers
|
752 |
-
all_hidden_states = () if output_hidden_states else None
|
753 |
-
all_self_attns = () if output_attentions else None
|
754 |
-
next_decoder_cache = None
|
755 |
-
|
756 |
-
for decoder_layer in self.layers:
|
757 |
-
if output_hidden_states:
|
758 |
-
all_hidden_states += (hidden_states,)
|
759 |
-
|
760 |
-
if self.gradient_checkpointing and self.training:
|
761 |
-
layer_outputs = self._gradient_checkpointing_func(
|
762 |
-
decoder_layer.__call__,
|
763 |
-
hidden_states,
|
764 |
-
causal_mask,
|
765 |
-
position_ids,
|
766 |
-
past_key_values,
|
767 |
-
output_attentions,
|
768 |
-
use_cache,
|
769 |
-
cache_position,
|
770 |
-
position_embeddings,
|
771 |
-
)
|
772 |
-
else:
|
773 |
-
layer_outputs = decoder_layer(
|
774 |
-
hidden_states,
|
775 |
-
attention_mask=causal_mask,
|
776 |
-
position_ids=position_ids,
|
777 |
-
past_key_value=past_key_values,
|
778 |
-
output_attentions=output_attentions,
|
779 |
-
use_cache=use_cache,
|
780 |
-
cache_position=cache_position,
|
781 |
-
position_embeddings=position_embeddings,
|
782 |
-
)
|
783 |
-
|
784 |
-
hidden_states = layer_outputs[0]
|
785 |
-
|
786 |
-
if use_cache:
|
787 |
-
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
788 |
-
|
789 |
-
if output_attentions:
|
790 |
-
all_self_attns += (layer_outputs[1],)
|
791 |
-
|
792 |
-
hidden_states = self.norm(hidden_states)
|
793 |
-
|
794 |
-
# add hidden states from the last decoder layer
|
795 |
-
if output_hidden_states:
|
796 |
-
all_hidden_states += (hidden_states,)
|
797 |
-
|
798 |
-
next_cache = next_decoder_cache if use_cache else None
|
799 |
-
if return_legacy_cache:
|
800 |
-
next_cache = next_cache.to_legacy_cache()
|
801 |
-
|
802 |
-
if not return_dict:
|
803 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
804 |
-
return BaseModelOutputWithPast(
|
805 |
-
last_hidden_state=hidden_states,
|
806 |
-
past_key_values=next_cache,
|
807 |
-
hidden_states=all_hidden_states,
|
808 |
-
attentions=all_self_attns,
|
809 |
-
)
|
810 |
-
|
811 |
-
|
812 |
-
class Qwen2ForCausalLM(Qwen2PreTrainedModel, GenerationMixin):
|
813 |
-
_tied_weights_keys = ["lm_head.weight"]
|
814 |
-
|
815 |
-
def __init__(self, config):
|
816 |
-
super().__init__(config)
|
817 |
-
self.model = Qwen2Model(config)
|
818 |
-
self.vocab_size = config.vocab_size
|
819 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
820 |
-
|
821 |
-
# Initialize weights and apply final processing
|
822 |
-
self.post_init()
|
823 |
-
|
824 |
-
def get_input_embeddings(self):
|
825 |
-
return self.model.embed_tokens
|
826 |
-
|
827 |
-
def set_input_embeddings(self, value):
|
828 |
-
self.model.embed_tokens = value
|
829 |
-
|
830 |
-
def get_output_embeddings(self):
|
831 |
-
return self.lm_head
|
832 |
-
|
833 |
-
def set_output_embeddings(self, new_embeddings):
|
834 |
-
self.lm_head = new_embeddings
|
835 |
-
|
836 |
-
def set_decoder(self, decoder):
|
837 |
-
self.model = decoder
|
838 |
-
|
839 |
-
def get_decoder(self):
|
840 |
-
return self.model
|
841 |
-
|
842 |
-
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
843 |
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
844 |
-
def forward(
|
845 |
-
self,
|
846 |
-
input_ids: torch.LongTensor = None,
|
847 |
-
attention_mask: Optional[torch.Tensor] = None,
|
848 |
-
position_ids: Optional[torch.LongTensor] = None,
|
849 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
850 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
851 |
-
labels: Optional[torch.LongTensor] = None,
|
852 |
-
use_cache: Optional[bool] = None,
|
853 |
-
output_attentions: Optional[bool] = None,
|
854 |
-
output_hidden_states: Optional[bool] = None,
|
855 |
-
return_dict: Optional[bool] = None,
|
856 |
-
cache_position: Optional[torch.LongTensor] = None,
|
857 |
-
num_logits_to_keep: int = 0,
|
858 |
-
**loss_kwargs,
|
859 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
860 |
-
r"""
|
861 |
-
Args:
|
862 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
863 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
864 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
865 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
866 |
-
|
867 |
-
num_logits_to_keep (`int`, *optional*):
|
868 |
-
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
869 |
-
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
870 |
-
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
871 |
-
|
872 |
-
Returns:
|
873 |
-
|
874 |
-
Example:
|
875 |
-
|
876 |
-
```python
|
877 |
-
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
|
878 |
-
|
879 |
-
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
880 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
881 |
-
|
882 |
-
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
883 |
-
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
884 |
-
|
885 |
-
>>> # Generate
|
886 |
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
887 |
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
888 |
-
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
889 |
-
```"""
|
890 |
-
|
891 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
892 |
-
output_hidden_states = (
|
893 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
894 |
-
)
|
895 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
896 |
-
|
897 |
-
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
898 |
-
outputs = self.model(
|
899 |
-
input_ids=input_ids,
|
900 |
-
attention_mask=attention_mask,
|
901 |
-
position_ids=position_ids,
|
902 |
-
past_key_values=past_key_values,
|
903 |
-
inputs_embeds=inputs_embeds,
|
904 |
-
use_cache=use_cache,
|
905 |
-
output_attentions=output_attentions,
|
906 |
-
output_hidden_states=output_hidden_states,
|
907 |
-
return_dict=return_dict,
|
908 |
-
cache_position=cache_position,
|
909 |
-
)
|
910 |
-
|
911 |
-
hidden_states = outputs[0]
|
912 |
-
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
913 |
-
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
914 |
-
|
915 |
-
loss = None
|
916 |
-
if labels is not None:
|
917 |
-
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
918 |
-
|
919 |
-
if not return_dict:
|
920 |
-
output = (logits,) + outputs[1:]
|
921 |
-
return (loss,) + output if loss is not None else output
|
922 |
-
|
923 |
-
return CausalLMOutputWithPast(
|
924 |
-
loss=loss,
|
925 |
-
logits=logits,
|
926 |
-
past_key_values=outputs.past_key_values,
|
927 |
-
hidden_states=outputs.hidden_states,
|
928 |
-
attentions=outputs.attentions,
|
929 |
-
)
|
|
|
1 |
+
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""PyTorch Qwen2 model."""
|
5 |
+
|
6 |
+
import math
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from transformers.activations import ACT2FN
|
14 |
+
from transformers.cache_utils import Cache, DynamicCache
|
15 |
+
from transformers.generation import GenerationMixin
|
16 |
+
from transformers.modeling_outputs import (
|
17 |
+
BaseModelOutputWithPast,
|
18 |
+
CausalLMOutputWithPast,
|
19 |
+
)
|
20 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
21 |
+
from transformers.modeling_utils import PreTrainedModel
|
22 |
+
from transformers.utils import (
|
23 |
+
add_start_docstrings,
|
24 |
+
add_start_docstrings_to_model_forward,
|
25 |
+
is_flash_attn_2_available,
|
26 |
+
is_flash_attn_greater_or_equal_2_10,
|
27 |
+
logging,
|
28 |
+
replace_return_docstrings,
|
29 |
+
)
|
30 |
+
from .configuration_qwen2 import Qwen2Config
|
31 |
+
|
32 |
+
|
33 |
+
if is_flash_attn_2_available():
|
34 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B"
|
41 |
+
_CONFIG_FOR_DOC = "Qwen2Config"
|
42 |
+
|
43 |
+
|
44 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
|
45 |
+
class Qwen2RMSNorm(nn.Module):
|
46 |
+
def __init__(self, hidden_size, eps=1e-6):
|
47 |
+
"""
|
48 |
+
Qwen2RMSNorm is equivalent to T5LayerNorm
|
49 |
+
"""
|
50 |
+
super().__init__()
|
51 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
52 |
+
self.variance_epsilon = eps
|
53 |
+
|
54 |
+
def forward(self, hidden_states):
|
55 |
+
input_dtype = hidden_states.dtype
|
56 |
+
hidden_states = hidden_states.to(torch.float32)
|
57 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
58 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
59 |
+
return self.weight * hidden_states.to(input_dtype)
|
60 |
+
|
61 |
+
def extra_repr(self):
|
62 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
63 |
+
|
64 |
+
|
65 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Qwen2
|
66 |
+
class Qwen2RotaryEmbedding(nn.Module):
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
dim=None,
|
70 |
+
max_position_embeddings=2048,
|
71 |
+
base=10000,
|
72 |
+
device=None,
|
73 |
+
scaling_factor=1.0,
|
74 |
+
rope_type="default",
|
75 |
+
config: Optional[Qwen2Config] = None,
|
76 |
+
):
|
77 |
+
super().__init__()
|
78 |
+
# TODO (joao): remove the `if` below, only used for BC
|
79 |
+
self.rope_kwargs = {}
|
80 |
+
if config is None:
|
81 |
+
logger.warning_once(
|
82 |
+
"`Qwen2RotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
83 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
84 |
+
)
|
85 |
+
self.rope_kwargs = {
|
86 |
+
"rope_type": rope_type,
|
87 |
+
"factor": scaling_factor,
|
88 |
+
"dim": dim,
|
89 |
+
"base": base,
|
90 |
+
"max_position_embeddings": max_position_embeddings,
|
91 |
+
}
|
92 |
+
self.rope_type = rope_type
|
93 |
+
self.max_seq_len_cached = max_position_embeddings
|
94 |
+
self.original_max_seq_len = max_position_embeddings
|
95 |
+
else:
|
96 |
+
# BC: "rope_type" was originally "type"
|
97 |
+
if config.rope_scaling is not None:
|
98 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
99 |
+
else:
|
100 |
+
self.rope_type = "default"
|
101 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
102 |
+
self.original_max_seq_len = config.max_position_embeddings
|
103 |
+
|
104 |
+
self.config = config
|
105 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
106 |
+
|
107 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
108 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
109 |
+
self.original_inv_freq = self.inv_freq
|
110 |
+
|
111 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
112 |
+
"""
|
113 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
114 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
115 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
116 |
+
"""
|
117 |
+
seq_len = torch.max(position_ids) + 1
|
118 |
+
if seq_len > self.max_seq_len_cached: # growth
|
119 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
120 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
121 |
+
)
|
122 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
123 |
+
self.max_seq_len_cached = seq_len
|
124 |
+
|
125 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
126 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
127 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
128 |
+
|
129 |
+
@torch.no_grad()
|
130 |
+
def forward(self, x, position_ids):
|
131 |
+
if "dynamic" in self.rope_type:
|
132 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
133 |
+
|
134 |
+
# Core RoPE block
|
135 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
136 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
137 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
138 |
+
device_type = x.device.type
|
139 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
140 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
141 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
142 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
143 |
+
cos = emb.cos()
|
144 |
+
sin = emb.sin()
|
145 |
+
|
146 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
147 |
+
cos = cos * self.attention_scaling
|
148 |
+
sin = sin * self.attention_scaling
|
149 |
+
|
150 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
151 |
+
|
152 |
+
|
153 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
154 |
+
def rotate_half(x):
|
155 |
+
"""Rotates half the hidden dims of the input."""
|
156 |
+
x1 = x[..., : x.shape[-1] // 2]
|
157 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
158 |
+
return torch.cat((-x2, x1), dim=-1)
|
159 |
+
|
160 |
+
|
161 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
162 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
163 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
q (`torch.Tensor`): The query tensor.
|
167 |
+
k (`torch.Tensor`): The key tensor.
|
168 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
169 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
170 |
+
position_ids (`torch.Tensor`, *optional*):
|
171 |
+
Deprecated and unused.
|
172 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
173 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
174 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
175 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
176 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
177 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
178 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
179 |
+
Returns:
|
180 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
181 |
+
"""
|
182 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
183 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
184 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
185 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
186 |
+
return q_embed, k_embed
|
187 |
+
|
188 |
+
|
189 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
|
190 |
+
class Qwen2MLP(nn.Module):
|
191 |
+
def __init__(self, config):
|
192 |
+
super().__init__()
|
193 |
+
self.hidden_size = config.hidden_size
|
194 |
+
self.intermediate_size = config.intermediate_size
|
195 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
196 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
197 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
198 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
199 |
+
|
200 |
+
def forward(self, hidden_state):
|
201 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
202 |
+
|
203 |
+
|
204 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
205 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
206 |
+
"""
|
207 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
208 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
209 |
+
"""
|
210 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
211 |
+
if n_rep == 1:
|
212 |
+
return hidden_states
|
213 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
214 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
215 |
+
|
216 |
+
|
217 |
+
class Qwen2Attention(nn.Module):
|
218 |
+
"""
|
219 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
220 |
+
and "Generating Long Sequences with Sparse Transformers".
|
221 |
+
"""
|
222 |
+
|
223 |
+
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
|
224 |
+
super().__init__()
|
225 |
+
self.config = config
|
226 |
+
self.layer_idx = layer_idx
|
227 |
+
if layer_idx is None:
|
228 |
+
logger.warning_once(
|
229 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
230 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
231 |
+
"when creating this class."
|
232 |
+
)
|
233 |
+
|
234 |
+
self.hidden_size = config.hidden_size
|
235 |
+
self.num_heads = config.num_attention_heads
|
236 |
+
self.head_dim = self.hidden_size // self.num_heads
|
237 |
+
self.num_key_value_heads = config.num_key_value_heads
|
238 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
239 |
+
self.max_position_embeddings = config.max_position_embeddings
|
240 |
+
self.rope_theta = config.rope_theta
|
241 |
+
self.is_causal = config.is_causal
|
242 |
+
self.attention_dropout = config.attention_dropout
|
243 |
+
|
244 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
245 |
+
raise ValueError(
|
246 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
247 |
+
f" and `num_heads`: {self.num_heads})."
|
248 |
+
)
|
249 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
250 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
251 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
252 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
253 |
+
|
254 |
+
def forward(
|
255 |
+
self,
|
256 |
+
hidden_states: torch.Tensor,
|
257 |
+
attention_mask: Optional[torch.Tensor] = None,
|
258 |
+
position_ids: Optional[torch.LongTensor] = None,
|
259 |
+
past_key_value: Optional[Cache] = None,
|
260 |
+
output_attentions: bool = False,
|
261 |
+
use_cache: bool = False,
|
262 |
+
cache_position: Optional[torch.LongTensor] = None,
|
263 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
264 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
265 |
+
bsz, q_len, _ = hidden_states.size()
|
266 |
+
|
267 |
+
query_states = self.q_proj(hidden_states)
|
268 |
+
key_states = self.k_proj(hidden_states)
|
269 |
+
value_states = self.v_proj(hidden_states)
|
270 |
+
|
271 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
272 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
273 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
274 |
+
|
275 |
+
if position_embeddings is None:
|
276 |
+
logger.warning_once(
|
277 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
278 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
279 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
280 |
+
"removed and `position_embeddings` will be mandatory."
|
281 |
+
)
|
282 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
283 |
+
else:
|
284 |
+
cos, sin = position_embeddings
|
285 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
286 |
+
|
287 |
+
if past_key_value is not None:
|
288 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
289 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
290 |
+
|
291 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
292 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
293 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
294 |
+
|
295 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
296 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
297 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
298 |
+
attn_weights = attn_weights + causal_mask
|
299 |
+
|
300 |
+
# upcast attention to fp32
|
301 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
302 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
303 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
304 |
+
|
305 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
306 |
+
raise ValueError(
|
307 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
308 |
+
f" {attn_output.size()}"
|
309 |
+
)
|
310 |
+
|
311 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
312 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
313 |
+
|
314 |
+
attn_output = self.o_proj(attn_output)
|
315 |
+
|
316 |
+
if not output_attentions:
|
317 |
+
attn_weights = None
|
318 |
+
|
319 |
+
return attn_output, attn_weights, past_key_value
|
320 |
+
|
321 |
+
|
322 |
+
class Qwen2FlashAttention2(Qwen2Attention):
|
323 |
+
"""
|
324 |
+
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
|
325 |
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
326 |
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
327 |
+
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
328 |
+
config.max_window_layers layers.
|
329 |
+
"""
|
330 |
+
|
331 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
332 |
+
def __init__(self, *args, **kwargs):
|
333 |
+
super().__init__(*args, **kwargs)
|
334 |
+
|
335 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
336 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
337 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
338 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
339 |
+
|
340 |
+
def forward(
|
341 |
+
self,
|
342 |
+
hidden_states: torch.Tensor,
|
343 |
+
attention_mask: Optional[torch.Tensor] = None,
|
344 |
+
position_ids: Optional[torch.LongTensor] = None,
|
345 |
+
past_key_value: Optional[Cache] = None,
|
346 |
+
output_attentions: bool = False,
|
347 |
+
use_cache: bool = False,
|
348 |
+
cache_position: Optional[torch.LongTensor] = None,
|
349 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
350 |
+
):
|
351 |
+
bsz, q_len, _ = hidden_states.size()
|
352 |
+
|
353 |
+
query_states = self.q_proj(hidden_states)
|
354 |
+
key_states = self.k_proj(hidden_states)
|
355 |
+
value_states = self.v_proj(hidden_states)
|
356 |
+
|
357 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
358 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
359 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
360 |
+
|
361 |
+
if position_embeddings is None:
|
362 |
+
logger.warning_once(
|
363 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
364 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
365 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
366 |
+
"removed and `position_embeddings` will be mandatory."
|
367 |
+
)
|
368 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
369 |
+
else:
|
370 |
+
cos, sin = position_embeddings
|
371 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
372 |
+
|
373 |
+
if past_key_value is not None:
|
374 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
375 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
376 |
+
|
377 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
378 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
379 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
380 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
381 |
+
|
382 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
383 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
384 |
+
# cast them back in float16 just to be sure everything works as expected.
|
385 |
+
input_dtype = query_states.dtype
|
386 |
+
if input_dtype == torch.float32:
|
387 |
+
if torch.is_autocast_enabled():
|
388 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
389 |
+
# Handle the case where the model is quantized
|
390 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
391 |
+
target_dtype = self.config._pre_quantization_dtype
|
392 |
+
else:
|
393 |
+
target_dtype = self.q_proj.weight.dtype
|
394 |
+
|
395 |
+
logger.warning_once(
|
396 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
397 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
398 |
+
f" {target_dtype}."
|
399 |
+
)
|
400 |
+
|
401 |
+
query_states = query_states.to(target_dtype)
|
402 |
+
key_states = key_states.to(target_dtype)
|
403 |
+
value_states = value_states.to(target_dtype)
|
404 |
+
|
405 |
+
# Reashape to the expected shape for Flash Attention
|
406 |
+
query_states = query_states.transpose(1, 2)
|
407 |
+
key_states = key_states.transpose(1, 2)
|
408 |
+
value_states = value_states.transpose(1, 2)
|
409 |
+
|
410 |
+
if (
|
411 |
+
self.config.use_sliding_window
|
412 |
+
and getattr(self.config, "sliding_window", None) is not None
|
413 |
+
and self.layer_idx >= self.config.max_window_layers
|
414 |
+
):
|
415 |
+
sliding_window = self.config.sliding_window
|
416 |
+
else:
|
417 |
+
sliding_window = None
|
418 |
+
|
419 |
+
attn_output = _flash_attention_forward(
|
420 |
+
query_states,
|
421 |
+
key_states,
|
422 |
+
value_states,
|
423 |
+
attention_mask,
|
424 |
+
q_len,
|
425 |
+
position_ids=position_ids,
|
426 |
+
dropout=dropout_rate,
|
427 |
+
sliding_window=sliding_window,
|
428 |
+
is_causal=self.is_causal,
|
429 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
430 |
+
)
|
431 |
+
|
432 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
433 |
+
attn_output = self.o_proj(attn_output)
|
434 |
+
|
435 |
+
if not output_attentions:
|
436 |
+
attn_weights = None
|
437 |
+
|
438 |
+
return attn_output, attn_weights, past_key_value
|
439 |
+
|
440 |
+
|
441 |
+
QWEN2_ATTENTION_CLASSES = {
|
442 |
+
"eager": Qwen2Attention,
|
443 |
+
"flash_attention_2": Qwen2FlashAttention2,
|
444 |
+
}
|
445 |
+
|
446 |
+
|
447 |
+
class Qwen2DecoderLayer(nn.Module):
|
448 |
+
def __init__(self, config: Qwen2Config, layer_idx: int):
|
449 |
+
super().__init__()
|
450 |
+
self.hidden_size = config.hidden_size
|
451 |
+
|
452 |
+
if config.sliding_window and config._attn_implementation != "flash_attention_2":
|
453 |
+
logger.warning_once(
|
454 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
455 |
+
"unexpected results may be encountered."
|
456 |
+
)
|
457 |
+
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
458 |
+
|
459 |
+
self.mlp = Qwen2MLP(config)
|
460 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
461 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
462 |
+
|
463 |
+
def forward(
|
464 |
+
self,
|
465 |
+
hidden_states: torch.Tensor,
|
466 |
+
attention_mask: Optional[torch.Tensor] = None,
|
467 |
+
position_ids: Optional[torch.LongTensor] = None,
|
468 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
469 |
+
output_attentions: Optional[bool] = False,
|
470 |
+
use_cache: Optional[bool] = False,
|
471 |
+
cache_position: Optional[torch.LongTensor] = None,
|
472 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
473 |
+
**kwargs,
|
474 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
475 |
+
"""
|
476 |
+
Args:
|
477 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
478 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
479 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
480 |
+
output_attentions (`bool`, *optional*):
|
481 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
482 |
+
returned tensors for more detail.
|
483 |
+
use_cache (`bool`, *optional*):
|
484 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
485 |
+
(see `past_key_values`).
|
486 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
487 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
488 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
489 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
490 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
491 |
+
with `head_dim` being the embedding dimension of each attention head.
|
492 |
+
kwargs (`dict`, *optional*):
|
493 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
494 |
+
into the model
|
495 |
+
"""
|
496 |
+
|
497 |
+
residual = hidden_states
|
498 |
+
|
499 |
+
hidden_states = self.input_layernorm(hidden_states)
|
500 |
+
|
501 |
+
# Self Attention
|
502 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
503 |
+
hidden_states=hidden_states,
|
504 |
+
attention_mask=attention_mask,
|
505 |
+
position_ids=position_ids,
|
506 |
+
past_key_value=past_key_value,
|
507 |
+
output_attentions=output_attentions,
|
508 |
+
use_cache=use_cache,
|
509 |
+
cache_position=cache_position,
|
510 |
+
position_embeddings=position_embeddings,
|
511 |
+
)
|
512 |
+
hidden_states = residual + hidden_states
|
513 |
+
|
514 |
+
# Fully Connected
|
515 |
+
residual = hidden_states
|
516 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
517 |
+
hidden_states = self.mlp(hidden_states)
|
518 |
+
hidden_states = residual + hidden_states
|
519 |
+
|
520 |
+
outputs = (hidden_states,)
|
521 |
+
|
522 |
+
if output_attentions:
|
523 |
+
outputs += (self_attn_weights,)
|
524 |
+
|
525 |
+
if use_cache:
|
526 |
+
outputs += (present_key_value,)
|
527 |
+
|
528 |
+
return outputs
|
529 |
+
|
530 |
+
|
531 |
+
QWEN2_START_DOCSTRING = r"""
|
532 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
533 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
534 |
+
etc.)
|
535 |
+
|
536 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
537 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
538 |
+
and behavior.
|
539 |
+
|
540 |
+
Parameters:
|
541 |
+
config ([`Qwen2Config`]):
|
542 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
543 |
+
load the weights associated with the model, only the configuration. Check out the
|
544 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
545 |
+
"""
|
546 |
+
|
547 |
+
|
548 |
+
@add_start_docstrings(
|
549 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
550 |
+
QWEN2_START_DOCSTRING,
|
551 |
+
)
|
552 |
+
class Qwen2PreTrainedModel(PreTrainedModel):
|
553 |
+
config_class = Qwen2Config
|
554 |
+
base_model_prefix = "model"
|
555 |
+
supports_gradient_checkpointing = True
|
556 |
+
_no_split_modules = ["Qwen2DecoderLayer"]
|
557 |
+
_skip_keys_device_placement = "past_key_values"
|
558 |
+
_supports_flash_attn_2 = True
|
559 |
+
_supports_cache_class = True
|
560 |
+
_supports_quantized_cache = True
|
561 |
+
_supports_static_cache = True
|
562 |
+
|
563 |
+
def _init_weights(self, module):
|
564 |
+
std = self.config.initializer_range
|
565 |
+
if isinstance(module, nn.Linear):
|
566 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
567 |
+
if module.bias is not None:
|
568 |
+
module.bias.data.zero_()
|
569 |
+
elif isinstance(module, nn.Embedding):
|
570 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
571 |
+
if module.padding_idx is not None:
|
572 |
+
module.weight.data[module.padding_idx].zero_()
|
573 |
+
|
574 |
+
|
575 |
+
QWEN2_INPUTS_DOCSTRING = r"""
|
576 |
+
Args:
|
577 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
578 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
579 |
+
it.
|
580 |
+
|
581 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
582 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
583 |
+
|
584 |
+
[What are input IDs?](../glossary#input-ids)
|
585 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
586 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
587 |
+
|
588 |
+
- 1 for tokens that are **not masked**,
|
589 |
+
- 0 for tokens that are **masked**.
|
590 |
+
|
591 |
+
[What are attention masks?](../glossary#attention-mask)
|
592 |
+
|
593 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
594 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
595 |
+
|
596 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
597 |
+
`past_key_values`).
|
598 |
+
|
599 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
600 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
601 |
+
information on the default strategy.
|
602 |
+
|
603 |
+
- 1 indicates the head is **not masked**,
|
604 |
+
- 0 indicates the head is **masked**.
|
605 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
606 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
607 |
+
config.n_positions - 1]`.
|
608 |
+
|
609 |
+
[What are position IDs?](../glossary#position-ids)
|
610 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
611 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
612 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
613 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
614 |
+
|
615 |
+
Two formats are allowed:
|
616 |
+
- a [`~cache_utils.Cache`] instance, see our
|
617 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
618 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
619 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
620 |
+
cache format.
|
621 |
+
|
622 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
623 |
+
legacy cache format will be returned.
|
624 |
+
|
625 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
626 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
627 |
+
of shape `(batch_size, sequence_length)`.
|
628 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
629 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
630 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
631 |
+
model's internal embedding lookup matrix.
|
632 |
+
use_cache (`bool`, *optional*):
|
633 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
634 |
+
`past_key_values`).
|
635 |
+
output_attentions (`bool`, *optional*):
|
636 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
637 |
+
tensors for more detail.
|
638 |
+
output_hidden_states (`bool`, *optional*):
|
639 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
640 |
+
more detail.
|
641 |
+
return_dict (`bool`, *optional*):
|
642 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
643 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
644 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
645 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
646 |
+
the complete sequence length.
|
647 |
+
"""
|
648 |
+
|
649 |
+
|
650 |
+
@add_start_docstrings(
|
651 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
652 |
+
QWEN2_START_DOCSTRING,
|
653 |
+
)
|
654 |
+
class Qwen2Model(Qwen2PreTrainedModel):
|
655 |
+
"""
|
656 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
657 |
+
|
658 |
+
Args:
|
659 |
+
config: Qwen2Config
|
660 |
+
"""
|
661 |
+
|
662 |
+
def __init__(self, config: Qwen2Config):
|
663 |
+
super().__init__(config)
|
664 |
+
self.padding_idx = config.pad_token_id
|
665 |
+
self.vocab_size = config.vocab_size
|
666 |
+
|
667 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
668 |
+
self.layers = nn.ModuleList(
|
669 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
670 |
+
)
|
671 |
+
self._attn_implementation = config._attn_implementation
|
672 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
673 |
+
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
674 |
+
|
675 |
+
self.gradient_checkpointing = False
|
676 |
+
# Initialize weights and apply final processing
|
677 |
+
self.post_init()
|
678 |
+
|
679 |
+
def get_input_embeddings(self):
|
680 |
+
return self.embed_tokens
|
681 |
+
|
682 |
+
def set_input_embeddings(self, value):
|
683 |
+
self.embed_tokens = value
|
684 |
+
|
685 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
686 |
+
def forward(
|
687 |
+
self,
|
688 |
+
input_ids: torch.LongTensor = None,
|
689 |
+
attention_mask: Optional[torch.Tensor] = None,
|
690 |
+
position_ids: Optional[torch.LongTensor] = None,
|
691 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
692 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
693 |
+
use_cache: Optional[bool] = None,
|
694 |
+
output_attentions: Optional[bool] = None,
|
695 |
+
output_hidden_states: Optional[bool] = None,
|
696 |
+
return_dict: Optional[bool] = None,
|
697 |
+
cache_position: Optional[torch.LongTensor] = None,
|
698 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
699 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
700 |
+
output_hidden_states = (
|
701 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
702 |
+
)
|
703 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
704 |
+
|
705 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
706 |
+
|
707 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
708 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
709 |
+
|
710 |
+
if self.gradient_checkpointing and self.training:
|
711 |
+
if use_cache:
|
712 |
+
logger.warning_once(
|
713 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
714 |
+
)
|
715 |
+
use_cache = False
|
716 |
+
|
717 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
718 |
+
return_legacy_cache = False
|
719 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
720 |
+
return_legacy_cache = True
|
721 |
+
if past_key_values is None:
|
722 |
+
past_key_values = DynamicCache()
|
723 |
+
else:
|
724 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
725 |
+
logger.warning_once(
|
726 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
727 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
728 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
729 |
+
)
|
730 |
+
|
731 |
+
if inputs_embeds is None:
|
732 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
733 |
+
|
734 |
+
if cache_position is None:
|
735 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
736 |
+
cache_position = torch.arange(
|
737 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
738 |
+
)
|
739 |
+
if position_ids is None:
|
740 |
+
position_ids = cache_position.unsqueeze(0)
|
741 |
+
|
742 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
743 |
+
causal_mask = attention_mask
|
744 |
+
else:
|
745 |
+
causal_mask = None
|
746 |
+
|
747 |
+
hidden_states = inputs_embeds
|
748 |
+
# create position embeddings to be shared across the decoder layers
|
749 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
750 |
+
|
751 |
+
# decoder layers
|
752 |
+
all_hidden_states = () if output_hidden_states else None
|
753 |
+
all_self_attns = () if output_attentions else None
|
754 |
+
next_decoder_cache = None
|
755 |
+
|
756 |
+
for decoder_layer in self.layers:
|
757 |
+
if output_hidden_states:
|
758 |
+
all_hidden_states += (hidden_states,)
|
759 |
+
|
760 |
+
if self.gradient_checkpointing and self.training:
|
761 |
+
layer_outputs = self._gradient_checkpointing_func(
|
762 |
+
decoder_layer.__call__,
|
763 |
+
hidden_states,
|
764 |
+
causal_mask,
|
765 |
+
position_ids,
|
766 |
+
past_key_values,
|
767 |
+
output_attentions,
|
768 |
+
use_cache,
|
769 |
+
cache_position,
|
770 |
+
position_embeddings,
|
771 |
+
)
|
772 |
+
else:
|
773 |
+
layer_outputs = decoder_layer(
|
774 |
+
hidden_states,
|
775 |
+
attention_mask=causal_mask,
|
776 |
+
position_ids=position_ids,
|
777 |
+
past_key_value=past_key_values,
|
778 |
+
output_attentions=output_attentions,
|
779 |
+
use_cache=use_cache,
|
780 |
+
cache_position=cache_position,
|
781 |
+
position_embeddings=position_embeddings,
|
782 |
+
)
|
783 |
+
|
784 |
+
hidden_states = layer_outputs[0]
|
785 |
+
|
786 |
+
if use_cache:
|
787 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
788 |
+
|
789 |
+
if output_attentions:
|
790 |
+
all_self_attns += (layer_outputs[1],)
|
791 |
+
|
792 |
+
hidden_states = self.norm(hidden_states)
|
793 |
+
|
794 |
+
# add hidden states from the last decoder layer
|
795 |
+
if output_hidden_states:
|
796 |
+
all_hidden_states += (hidden_states,)
|
797 |
+
|
798 |
+
next_cache = next_decoder_cache if use_cache else None
|
799 |
+
if return_legacy_cache:
|
800 |
+
next_cache = next_cache.to_legacy_cache()
|
801 |
+
|
802 |
+
if not return_dict:
|
803 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
804 |
+
return BaseModelOutputWithPast(
|
805 |
+
last_hidden_state=hidden_states,
|
806 |
+
past_key_values=next_cache,
|
807 |
+
hidden_states=all_hidden_states,
|
808 |
+
attentions=all_self_attns,
|
809 |
+
)
|
810 |
+
|
811 |
+
|
812 |
+
class Qwen2ForCausalLM(Qwen2PreTrainedModel, GenerationMixin):
|
813 |
+
_tied_weights_keys = ["lm_head.weight"]
|
814 |
+
|
815 |
+
def __init__(self, config):
|
816 |
+
super().__init__(config)
|
817 |
+
self.model = Qwen2Model(config)
|
818 |
+
self.vocab_size = config.vocab_size
|
819 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
820 |
+
|
821 |
+
# Initialize weights and apply final processing
|
822 |
+
self.post_init()
|
823 |
+
|
824 |
+
def get_input_embeddings(self):
|
825 |
+
return self.model.embed_tokens
|
826 |
+
|
827 |
+
def set_input_embeddings(self, value):
|
828 |
+
self.model.embed_tokens = value
|
829 |
+
|
830 |
+
def get_output_embeddings(self):
|
831 |
+
return self.lm_head
|
832 |
+
|
833 |
+
def set_output_embeddings(self, new_embeddings):
|
834 |
+
self.lm_head = new_embeddings
|
835 |
+
|
836 |
+
def set_decoder(self, decoder):
|
837 |
+
self.model = decoder
|
838 |
+
|
839 |
+
def get_decoder(self):
|
840 |
+
return self.model
|
841 |
+
|
842 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
843 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
844 |
+
def forward(
|
845 |
+
self,
|
846 |
+
input_ids: torch.LongTensor = None,
|
847 |
+
attention_mask: Optional[torch.Tensor] = None,
|
848 |
+
position_ids: Optional[torch.LongTensor] = None,
|
849 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
850 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
851 |
+
labels: Optional[torch.LongTensor] = None,
|
852 |
+
use_cache: Optional[bool] = None,
|
853 |
+
output_attentions: Optional[bool] = None,
|
854 |
+
output_hidden_states: Optional[bool] = None,
|
855 |
+
return_dict: Optional[bool] = None,
|
856 |
+
cache_position: Optional[torch.LongTensor] = None,
|
857 |
+
num_logits_to_keep: int = 0,
|
858 |
+
**loss_kwargs,
|
859 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
860 |
+
r"""
|
861 |
+
Args:
|
862 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
863 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
864 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
865 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
866 |
+
|
867 |
+
num_logits_to_keep (`int`, *optional*):
|
868 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
869 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
870 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
871 |
+
|
872 |
+
Returns:
|
873 |
+
|
874 |
+
Example:
|
875 |
+
|
876 |
+
```python
|
877 |
+
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
|
878 |
+
|
879 |
+
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
880 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
881 |
+
|
882 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
883 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
884 |
+
|
885 |
+
>>> # Generate
|
886 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
887 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
888 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
889 |
+
```"""
|
890 |
+
|
891 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
892 |
+
output_hidden_states = (
|
893 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
894 |
+
)
|
895 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
896 |
+
|
897 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
898 |
+
outputs = self.model(
|
899 |
+
input_ids=input_ids,
|
900 |
+
attention_mask=attention_mask,
|
901 |
+
position_ids=position_ids,
|
902 |
+
past_key_values=past_key_values,
|
903 |
+
inputs_embeds=inputs_embeds,
|
904 |
+
use_cache=use_cache,
|
905 |
+
output_attentions=output_attentions,
|
906 |
+
output_hidden_states=output_hidden_states,
|
907 |
+
return_dict=return_dict,
|
908 |
+
cache_position=cache_position,
|
909 |
+
)
|
910 |
+
|
911 |
+
hidden_states = outputs[0]
|
912 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
913 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
914 |
+
|
915 |
+
loss = None
|
916 |
+
if labels is not None:
|
917 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
918 |
+
|
919 |
+
if not return_dict:
|
920 |
+
output = (logits,) + outputs[1:]
|
921 |
+
return (loss,) + output if loss is not None else output
|
922 |
+
|
923 |
+
return CausalLMOutputWithPast(
|
924 |
+
loss=loss,
|
925 |
+
logits=logits,
|
926 |
+
past_key_values=outputs.past_key_values,
|
927 |
+
hidden_states=outputs.hidden_states,
|
928 |
+
attentions=outputs.attentions,
|
929 |
+
)
|
modeling/qwen2/tokenization_qwen2.py
CHANGED
@@ -1,328 +1,328 @@
|
|
1 |
-
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""Tokenization classes for Qwen2."""
|
5 |
-
|
6 |
-
import json
|
7 |
-
import os
|
8 |
-
import unicodedata
|
9 |
-
from functools import lru_cache
|
10 |
-
from typing import Optional, Tuple
|
11 |
-
|
12 |
-
import regex as re
|
13 |
-
|
14 |
-
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
15 |
-
from transformers.utils import logging
|
16 |
-
|
17 |
-
|
18 |
-
logger = logging.get_logger(__name__)
|
19 |
-
|
20 |
-
VOCAB_FILES_NAMES = {
|
21 |
-
"vocab_file": "vocab.json",
|
22 |
-
"merges_file": "merges.txt",
|
23 |
-
}
|
24 |
-
|
25 |
-
|
26 |
-
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
|
27 |
-
|
28 |
-
PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
29 |
-
|
30 |
-
|
31 |
-
@lru_cache()
|
32 |
-
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
|
33 |
-
def bytes_to_unicode():
|
34 |
-
"""
|
35 |
-
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
36 |
-
characters the bpe code barfs on.
|
37 |
-
|
38 |
-
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
39 |
-
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
40 |
-
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
41 |
-
tables between utf-8 bytes and unicode strings.
|
42 |
-
"""
|
43 |
-
bs = (
|
44 |
-
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
45 |
-
)
|
46 |
-
cs = bs[:]
|
47 |
-
n = 0
|
48 |
-
for b in range(2**8):
|
49 |
-
if b not in bs:
|
50 |
-
bs.append(b)
|
51 |
-
cs.append(2**8 + n)
|
52 |
-
n += 1
|
53 |
-
cs = [chr(n) for n in cs]
|
54 |
-
return dict(zip(bs, cs))
|
55 |
-
|
56 |
-
|
57 |
-
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
|
58 |
-
def get_pairs(word):
|
59 |
-
"""
|
60 |
-
Return set of symbol pairs in a word.
|
61 |
-
|
62 |
-
Word is represented as tuple of symbols (symbols being variable-length strings).
|
63 |
-
"""
|
64 |
-
pairs = set()
|
65 |
-
prev_char = word[0]
|
66 |
-
for char in word[1:]:
|
67 |
-
pairs.add((prev_char, char))
|
68 |
-
prev_char = char
|
69 |
-
return pairs
|
70 |
-
|
71 |
-
|
72 |
-
class Qwen2Tokenizer(PreTrainedTokenizer):
|
73 |
-
"""
|
74 |
-
Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
75 |
-
|
76 |
-
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
77 |
-
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
78 |
-
|
79 |
-
```python
|
80 |
-
>>> from transformers import Qwen2Tokenizer
|
81 |
-
|
82 |
-
>>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
|
83 |
-
>>> tokenizer("Hello world")["input_ids"]
|
84 |
-
[9707, 1879]
|
85 |
-
|
86 |
-
>>> tokenizer(" Hello world")["input_ids"]
|
87 |
-
[21927, 1879]
|
88 |
-
```
|
89 |
-
This is expected.
|
90 |
-
|
91 |
-
You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
|
92 |
-
|
93 |
-
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
94 |
-
this superclass for more information regarding those methods.
|
95 |
-
|
96 |
-
Args:
|
97 |
-
vocab_file (`str`):
|
98 |
-
Path to the vocabulary file.
|
99 |
-
merges_file (`str`):
|
100 |
-
Path to the merges file.
|
101 |
-
errors (`str`, *optional*, defaults to `"replace"`):
|
102 |
-
Paradigm to follow when decoding bytes to UTF-8. See
|
103 |
-
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
104 |
-
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
105 |
-
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
106 |
-
token instead.
|
107 |
-
bos_token (`str`, *optional*):
|
108 |
-
The beginning of sequence token. Not applicable for this tokenizer.
|
109 |
-
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
110 |
-
The end of sequence token.
|
111 |
-
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
112 |
-
The token used for padding, for example when batching sequences of different lengths.
|
113 |
-
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
114 |
-
Whether or not the model should cleanup the spaces that were added when splitting the input text during the
|
115 |
-
tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
|
116 |
-
split_special_tokens (`bool`, *optional*, defaults to `False`):
|
117 |
-
Whether or not the special tokens should be split during the tokenization process. The default behavior is
|
118 |
-
to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
|
119 |
-
['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
|
120 |
-
'|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
|
121 |
-
"""
|
122 |
-
|
123 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
124 |
-
model_input_names = ["input_ids", "attention_mask"]
|
125 |
-
|
126 |
-
def __init__(
|
127 |
-
self,
|
128 |
-
vocab_file,
|
129 |
-
merges_file,
|
130 |
-
errors="replace",
|
131 |
-
unk_token="<|endoftext|>",
|
132 |
-
bos_token=None,
|
133 |
-
eos_token="<|endoftext|>",
|
134 |
-
pad_token="<|endoftext|>",
|
135 |
-
clean_up_tokenization_spaces=False,
|
136 |
-
split_special_tokens=False,
|
137 |
-
**kwargs,
|
138 |
-
):
|
139 |
-
# Qwen vocab does not contain control tokens; added tokens need to be special
|
140 |
-
bos_token = (
|
141 |
-
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
142 |
-
if isinstance(bos_token, str)
|
143 |
-
else bos_token
|
144 |
-
)
|
145 |
-
eos_token = (
|
146 |
-
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
147 |
-
if isinstance(eos_token, str)
|
148 |
-
else eos_token
|
149 |
-
)
|
150 |
-
unk_token = (
|
151 |
-
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
152 |
-
if isinstance(unk_token, str)
|
153 |
-
else unk_token
|
154 |
-
)
|
155 |
-
pad_token = (
|
156 |
-
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
157 |
-
if isinstance(pad_token, str)
|
158 |
-
else pad_token
|
159 |
-
)
|
160 |
-
|
161 |
-
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
162 |
-
self.encoder = json.load(vocab_handle)
|
163 |
-
self.decoder = {v: k for k, v in self.encoder.items()}
|
164 |
-
self.errors = errors # how to handle errors in decoding
|
165 |
-
self.byte_encoder = bytes_to_unicode()
|
166 |
-
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
167 |
-
bpe_merges = []
|
168 |
-
with open(merges_file, encoding="utf-8") as merges_handle:
|
169 |
-
for i, line in enumerate(merges_handle):
|
170 |
-
line = line.strip()
|
171 |
-
if (i == 0 and line.startswith("#version:")) or not line:
|
172 |
-
continue
|
173 |
-
bpe_merges.append(tuple(line.split()))
|
174 |
-
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
175 |
-
# NOTE: the cache can grow without bound and will get really large for long running processes
|
176 |
-
# (esp. for texts of language that do not use space between word, e.g. Chinese); technically
|
177 |
-
# not a memory leak but appears as one.
|
178 |
-
# GPT2Tokenizer has the same problem, so let's be consistent.
|
179 |
-
self.cache = {}
|
180 |
-
|
181 |
-
self.pat = re.compile(PRETOKENIZE_REGEX)
|
182 |
-
|
183 |
-
if kwargs.get("add_prefix_space", False):
|
184 |
-
logger.warning_once(
|
185 |
-
f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect."
|
186 |
-
)
|
187 |
-
|
188 |
-
super().__init__(
|
189 |
-
errors=errors,
|
190 |
-
bos_token=bos_token,
|
191 |
-
eos_token=eos_token,
|
192 |
-
pad_token=pad_token,
|
193 |
-
unk_token=unk_token,
|
194 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
195 |
-
split_special_tokens=split_special_tokens,
|
196 |
-
**kwargs,
|
197 |
-
)
|
198 |
-
|
199 |
-
@property
|
200 |
-
def vocab_size(self) -> int:
|
201 |
-
return len(self.encoder)
|
202 |
-
|
203 |
-
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
|
204 |
-
def get_vocab(self):
|
205 |
-
return dict(self.encoder, **self.added_tokens_encoder)
|
206 |
-
|
207 |
-
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
|
208 |
-
def bpe(self, token):
|
209 |
-
if token in self.cache:
|
210 |
-
return self.cache[token]
|
211 |
-
word = tuple(token)
|
212 |
-
pairs = get_pairs(word)
|
213 |
-
|
214 |
-
if not pairs:
|
215 |
-
return token
|
216 |
-
|
217 |
-
while True:
|
218 |
-
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
219 |
-
if bigram not in self.bpe_ranks:
|
220 |
-
break
|
221 |
-
first, second = bigram
|
222 |
-
new_word = []
|
223 |
-
i = 0
|
224 |
-
while i < len(word):
|
225 |
-
try:
|
226 |
-
j = word.index(first, i)
|
227 |
-
except ValueError:
|
228 |
-
new_word.extend(word[i:])
|
229 |
-
break
|
230 |
-
else:
|
231 |
-
new_word.extend(word[i:j])
|
232 |
-
i = j
|
233 |
-
|
234 |
-
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
235 |
-
new_word.append(first + second)
|
236 |
-
i += 2
|
237 |
-
else:
|
238 |
-
new_word.append(word[i])
|
239 |
-
i += 1
|
240 |
-
new_word = tuple(new_word)
|
241 |
-
word = new_word
|
242 |
-
if len(word) == 1:
|
243 |
-
break
|
244 |
-
else:
|
245 |
-
pairs = get_pairs(word)
|
246 |
-
word = " ".join(word)
|
247 |
-
self.cache[token] = word
|
248 |
-
return word
|
249 |
-
|
250 |
-
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
|
251 |
-
def _tokenize(self, text):
|
252 |
-
"""Tokenize a string."""
|
253 |
-
bpe_tokens = []
|
254 |
-
for token in re.findall(self.pat, text):
|
255 |
-
token = "".join(
|
256 |
-
self.byte_encoder[b] for b in token.encode("utf-8")
|
257 |
-
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
258 |
-
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
259 |
-
return bpe_tokens
|
260 |
-
|
261 |
-
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
|
262 |
-
def _convert_token_to_id(self, token):
|
263 |
-
"""Converts a token (str) in an id using the vocab."""
|
264 |
-
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
265 |
-
|
266 |
-
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
|
267 |
-
def _convert_id_to_token(self, index):
|
268 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
269 |
-
return self.decoder.get(index)
|
270 |
-
|
271 |
-
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
|
272 |
-
def convert_tokens_to_string(self, tokens):
|
273 |
-
"""Converts a sequence of tokens (string) in a single string."""
|
274 |
-
text = "".join(tokens)
|
275 |
-
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
276 |
-
return text
|
277 |
-
|
278 |
-
def decode(
|
279 |
-
self,
|
280 |
-
token_ids,
|
281 |
-
skip_special_tokens: bool = False,
|
282 |
-
clean_up_tokenization_spaces: Optional[bool] = False,
|
283 |
-
spaces_between_special_tokens: bool = False,
|
284 |
-
**kwargs,
|
285 |
-
) -> str:
|
286 |
-
# `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers
|
287 |
-
# and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer
|
288 |
-
return super().decode(
|
289 |
-
token_ids,
|
290 |
-
skip_special_tokens=skip_special_tokens,
|
291 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
292 |
-
spaces_between_special_tokens=spaces_between_special_tokens,
|
293 |
-
**kwargs,
|
294 |
-
)
|
295 |
-
|
296 |
-
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
|
297 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
298 |
-
if not os.path.isdir(save_directory):
|
299 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
300 |
-
return
|
301 |
-
vocab_file = os.path.join(
|
302 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
303 |
-
)
|
304 |
-
merge_file = os.path.join(
|
305 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
306 |
-
)
|
307 |
-
|
308 |
-
with open(vocab_file, "w", encoding="utf-8") as f:
|
309 |
-
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
310 |
-
|
311 |
-
index = 0
|
312 |
-
with open(merge_file, "w", encoding="utf-8") as writer:
|
313 |
-
writer.write("#version: 0.2\n")
|
314 |
-
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
315 |
-
if index != token_index:
|
316 |
-
logger.warning(
|
317 |
-
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
318 |
-
" Please check that the tokenizer is not corrupted!"
|
319 |
-
)
|
320 |
-
index = token_index
|
321 |
-
writer.write(" ".join(bpe_tokens) + "\n")
|
322 |
-
index += 1
|
323 |
-
|
324 |
-
return vocab_file, merge_file
|
325 |
-
|
326 |
-
def prepare_for_tokenization(self, text, **kwargs):
|
327 |
-
text = unicodedata.normalize("NFC", text)
|
328 |
-
return (text, kwargs)
|
|
|
1 |
+
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Tokenization classes for Qwen2."""
|
5 |
+
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
import unicodedata
|
9 |
+
from functools import lru_cache
|
10 |
+
from typing import Optional, Tuple
|
11 |
+
|
12 |
+
import regex as re
|
13 |
+
|
14 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
15 |
+
from transformers.utils import logging
|
16 |
+
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {
|
21 |
+
"vocab_file": "vocab.json",
|
22 |
+
"merges_file": "merges.txt",
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
|
27 |
+
|
28 |
+
PRETOKENIZE_REGEX = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
29 |
+
|
30 |
+
|
31 |
+
@lru_cache()
|
32 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode
|
33 |
+
def bytes_to_unicode():
|
34 |
+
"""
|
35 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
36 |
+
characters the bpe code barfs on.
|
37 |
+
|
38 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
39 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
40 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
41 |
+
tables between utf-8 bytes and unicode strings.
|
42 |
+
"""
|
43 |
+
bs = (
|
44 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
45 |
+
)
|
46 |
+
cs = bs[:]
|
47 |
+
n = 0
|
48 |
+
for b in range(2**8):
|
49 |
+
if b not in bs:
|
50 |
+
bs.append(b)
|
51 |
+
cs.append(2**8 + n)
|
52 |
+
n += 1
|
53 |
+
cs = [chr(n) for n in cs]
|
54 |
+
return dict(zip(bs, cs))
|
55 |
+
|
56 |
+
|
57 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs
|
58 |
+
def get_pairs(word):
|
59 |
+
"""
|
60 |
+
Return set of symbol pairs in a word.
|
61 |
+
|
62 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
63 |
+
"""
|
64 |
+
pairs = set()
|
65 |
+
prev_char = word[0]
|
66 |
+
for char in word[1:]:
|
67 |
+
pairs.add((prev_char, char))
|
68 |
+
prev_char = char
|
69 |
+
return pairs
|
70 |
+
|
71 |
+
|
72 |
+
class Qwen2Tokenizer(PreTrainedTokenizer):
|
73 |
+
"""
|
74 |
+
Construct a Qwen2 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
75 |
+
|
76 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
77 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
78 |
+
|
79 |
+
```python
|
80 |
+
>>> from transformers import Qwen2Tokenizer
|
81 |
+
|
82 |
+
>>> tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen-tokenizer")
|
83 |
+
>>> tokenizer("Hello world")["input_ids"]
|
84 |
+
[9707, 1879]
|
85 |
+
|
86 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
87 |
+
[21927, 1879]
|
88 |
+
```
|
89 |
+
This is expected.
|
90 |
+
|
91 |
+
You should not use GPT2Tokenizer instead, because of the different pretokenization rules.
|
92 |
+
|
93 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
94 |
+
this superclass for more information regarding those methods.
|
95 |
+
|
96 |
+
Args:
|
97 |
+
vocab_file (`str`):
|
98 |
+
Path to the vocabulary file.
|
99 |
+
merges_file (`str`):
|
100 |
+
Path to the merges file.
|
101 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
102 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
103 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
104 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
105 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
106 |
+
token instead.
|
107 |
+
bos_token (`str`, *optional*):
|
108 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
109 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
110 |
+
The end of sequence token.
|
111 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
112 |
+
The token used for padding, for example when batching sequences of different lengths.
|
113 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
114 |
+
Whether or not the model should cleanup the spaces that were added when splitting the input text during the
|
115 |
+
tokenization process. Not applicable to this tokenizer, since tokenization does not add spaces.
|
116 |
+
split_special_tokens (`bool`, *optional*, defaults to `False`):
|
117 |
+
Whether or not the special tokens should be split during the tokenization process. The default behavior is
|
118 |
+
to not split special tokens. This means that if `<|endoftext|>` is the `eos_token`, then `tokenizer.tokenize("<|endoftext|>") =
|
119 |
+
['<|endoftext|>`]. Otherwise, if `split_special_tokens=True`, then `tokenizer.tokenize("<|endoftext|>")` will be give `['<',
|
120 |
+
'|', 'endo', 'ft', 'ext', '|', '>']`. This argument is only supported for `slow` tokenizers for the moment.
|
121 |
+
"""
|
122 |
+
|
123 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
124 |
+
model_input_names = ["input_ids", "attention_mask"]
|
125 |
+
|
126 |
+
def __init__(
|
127 |
+
self,
|
128 |
+
vocab_file,
|
129 |
+
merges_file,
|
130 |
+
errors="replace",
|
131 |
+
unk_token="<|endoftext|>",
|
132 |
+
bos_token=None,
|
133 |
+
eos_token="<|endoftext|>",
|
134 |
+
pad_token="<|endoftext|>",
|
135 |
+
clean_up_tokenization_spaces=False,
|
136 |
+
split_special_tokens=False,
|
137 |
+
**kwargs,
|
138 |
+
):
|
139 |
+
# Qwen vocab does not contain control tokens; added tokens need to be special
|
140 |
+
bos_token = (
|
141 |
+
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
142 |
+
if isinstance(bos_token, str)
|
143 |
+
else bos_token
|
144 |
+
)
|
145 |
+
eos_token = (
|
146 |
+
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
147 |
+
if isinstance(eos_token, str)
|
148 |
+
else eos_token
|
149 |
+
)
|
150 |
+
unk_token = (
|
151 |
+
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
152 |
+
if isinstance(unk_token, str)
|
153 |
+
else unk_token
|
154 |
+
)
|
155 |
+
pad_token = (
|
156 |
+
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
157 |
+
if isinstance(pad_token, str)
|
158 |
+
else pad_token
|
159 |
+
)
|
160 |
+
|
161 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
162 |
+
self.encoder = json.load(vocab_handle)
|
163 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
164 |
+
self.errors = errors # how to handle errors in decoding
|
165 |
+
self.byte_encoder = bytes_to_unicode()
|
166 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
167 |
+
bpe_merges = []
|
168 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
169 |
+
for i, line in enumerate(merges_handle):
|
170 |
+
line = line.strip()
|
171 |
+
if (i == 0 and line.startswith("#version:")) or not line:
|
172 |
+
continue
|
173 |
+
bpe_merges.append(tuple(line.split()))
|
174 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
175 |
+
# NOTE: the cache can grow without bound and will get really large for long running processes
|
176 |
+
# (esp. for texts of language that do not use space between word, e.g. Chinese); technically
|
177 |
+
# not a memory leak but appears as one.
|
178 |
+
# GPT2Tokenizer has the same problem, so let's be consistent.
|
179 |
+
self.cache = {}
|
180 |
+
|
181 |
+
self.pat = re.compile(PRETOKENIZE_REGEX)
|
182 |
+
|
183 |
+
if kwargs.get("add_prefix_space", False):
|
184 |
+
logger.warning_once(
|
185 |
+
f"{self.__class__.__name} does not support `add_prefix_space`, setting it to True has no effect."
|
186 |
+
)
|
187 |
+
|
188 |
+
super().__init__(
|
189 |
+
errors=errors,
|
190 |
+
bos_token=bos_token,
|
191 |
+
eos_token=eos_token,
|
192 |
+
pad_token=pad_token,
|
193 |
+
unk_token=unk_token,
|
194 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
195 |
+
split_special_tokens=split_special_tokens,
|
196 |
+
**kwargs,
|
197 |
+
)
|
198 |
+
|
199 |
+
@property
|
200 |
+
def vocab_size(self) -> int:
|
201 |
+
return len(self.encoder)
|
202 |
+
|
203 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
|
204 |
+
def get_vocab(self):
|
205 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
206 |
+
|
207 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
|
208 |
+
def bpe(self, token):
|
209 |
+
if token in self.cache:
|
210 |
+
return self.cache[token]
|
211 |
+
word = tuple(token)
|
212 |
+
pairs = get_pairs(word)
|
213 |
+
|
214 |
+
if not pairs:
|
215 |
+
return token
|
216 |
+
|
217 |
+
while True:
|
218 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
219 |
+
if bigram not in self.bpe_ranks:
|
220 |
+
break
|
221 |
+
first, second = bigram
|
222 |
+
new_word = []
|
223 |
+
i = 0
|
224 |
+
while i < len(word):
|
225 |
+
try:
|
226 |
+
j = word.index(first, i)
|
227 |
+
except ValueError:
|
228 |
+
new_word.extend(word[i:])
|
229 |
+
break
|
230 |
+
else:
|
231 |
+
new_word.extend(word[i:j])
|
232 |
+
i = j
|
233 |
+
|
234 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
235 |
+
new_word.append(first + second)
|
236 |
+
i += 2
|
237 |
+
else:
|
238 |
+
new_word.append(word[i])
|
239 |
+
i += 1
|
240 |
+
new_word = tuple(new_word)
|
241 |
+
word = new_word
|
242 |
+
if len(word) == 1:
|
243 |
+
break
|
244 |
+
else:
|
245 |
+
pairs = get_pairs(word)
|
246 |
+
word = " ".join(word)
|
247 |
+
self.cache[token] = word
|
248 |
+
return word
|
249 |
+
|
250 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
|
251 |
+
def _tokenize(self, text):
|
252 |
+
"""Tokenize a string."""
|
253 |
+
bpe_tokens = []
|
254 |
+
for token in re.findall(self.pat, text):
|
255 |
+
token = "".join(
|
256 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
257 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
258 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
259 |
+
return bpe_tokens
|
260 |
+
|
261 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
|
262 |
+
def _convert_token_to_id(self, token):
|
263 |
+
"""Converts a token (str) in an id using the vocab."""
|
264 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
265 |
+
|
266 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
|
267 |
+
def _convert_id_to_token(self, index):
|
268 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
269 |
+
return self.decoder.get(index)
|
270 |
+
|
271 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
|
272 |
+
def convert_tokens_to_string(self, tokens):
|
273 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
274 |
+
text = "".join(tokens)
|
275 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
276 |
+
return text
|
277 |
+
|
278 |
+
def decode(
|
279 |
+
self,
|
280 |
+
token_ids,
|
281 |
+
skip_special_tokens: bool = False,
|
282 |
+
clean_up_tokenization_spaces: Optional[bool] = False,
|
283 |
+
spaces_between_special_tokens: bool = False,
|
284 |
+
**kwargs,
|
285 |
+
) -> str:
|
286 |
+
# `spaces_between_special_tokens` defaults to True for _decode in slow tokenizers
|
287 |
+
# and cannot be configured elsewhere, but it should default to False for Qwen2Tokenizer
|
288 |
+
return super().decode(
|
289 |
+
token_ids,
|
290 |
+
skip_special_tokens=skip_special_tokens,
|
291 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
292 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
293 |
+
**kwargs,
|
294 |
+
)
|
295 |
+
|
296 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
|
297 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
298 |
+
if not os.path.isdir(save_directory):
|
299 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
300 |
+
return
|
301 |
+
vocab_file = os.path.join(
|
302 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
303 |
+
)
|
304 |
+
merge_file = os.path.join(
|
305 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
306 |
+
)
|
307 |
+
|
308 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
309 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
310 |
+
|
311 |
+
index = 0
|
312 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
313 |
+
writer.write("#version: 0.2\n")
|
314 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
315 |
+
if index != token_index:
|
316 |
+
logger.warning(
|
317 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
318 |
+
" Please check that the tokenizer is not corrupted!"
|
319 |
+
)
|
320 |
+
index = token_index
|
321 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
322 |
+
index += 1
|
323 |
+
|
324 |
+
return vocab_file, merge_file
|
325 |
+
|
326 |
+
def prepare_for_tokenization(self, text, **kwargs):
|
327 |
+
text = unicodedata.normalize("NFC", text)
|
328 |
+
return (text, kwargs)
|
modeling/qwen2/tokenization_qwen2_fast.py
CHANGED
@@ -1,123 +1,123 @@
|
|
1 |
-
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""Tokenization classes for Qwen2."""
|
5 |
-
|
6 |
-
from typing import Optional, Tuple
|
7 |
-
|
8 |
-
from transformers.tokenization_utils import AddedToken
|
9 |
-
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
10 |
-
from transformers.utils import logging
|
11 |
-
from .tokenization_qwen2 import Qwen2Tokenizer
|
12 |
-
|
13 |
-
|
14 |
-
logger = logging.get_logger(__name__)
|
15 |
-
|
16 |
-
VOCAB_FILES_NAMES = {
|
17 |
-
"vocab_file": "vocab.json",
|
18 |
-
"merges_file": "merges.txt",
|
19 |
-
"tokenizer_file": "tokenizer.json",
|
20 |
-
}
|
21 |
-
|
22 |
-
|
23 |
-
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
|
24 |
-
|
25 |
-
|
26 |
-
class Qwen2TokenizerFast(PreTrainedTokenizerFast):
|
27 |
-
"""
|
28 |
-
Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
29 |
-
Byte-Pair-Encoding.
|
30 |
-
|
31 |
-
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
32 |
-
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
33 |
-
|
34 |
-
```python
|
35 |
-
>>> from transformers import Qwen2TokenizerFast
|
36 |
-
|
37 |
-
>>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
|
38 |
-
>>> tokenizer("Hello world")["input_ids"]
|
39 |
-
[9707, 1879]
|
40 |
-
|
41 |
-
>>> tokenizer(" Hello world")["input_ids"]
|
42 |
-
[21927, 1879]
|
43 |
-
```
|
44 |
-
This is expected.
|
45 |
-
|
46 |
-
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
47 |
-
refer to this superclass for more information regarding those methods.
|
48 |
-
|
49 |
-
Args:
|
50 |
-
vocab_file (`str`, *optional*):
|
51 |
-
Path to the vocabulary file.
|
52 |
-
merges_file (`str`, *optional*):
|
53 |
-
Path to the merges file.
|
54 |
-
tokenizer_file (`str`, *optional*):
|
55 |
-
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
56 |
-
contains everything needed to load the tokenizer.
|
57 |
-
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
58 |
-
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
59 |
-
token instead. Not applicable to this tokenizer.
|
60 |
-
bos_token (`str`, *optional*):
|
61 |
-
The beginning of sequence token. Not applicable for this tokenizer.
|
62 |
-
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
63 |
-
The end of sequence token.
|
64 |
-
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
65 |
-
The token used for padding, for example when batching sequences of different lengths.
|
66 |
-
"""
|
67 |
-
|
68 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
69 |
-
model_input_names = ["input_ids", "attention_mask"]
|
70 |
-
slow_tokenizer_class = Qwen2Tokenizer
|
71 |
-
|
72 |
-
def __init__(
|
73 |
-
self,
|
74 |
-
vocab_file=None,
|
75 |
-
merges_file=None,
|
76 |
-
tokenizer_file=None,
|
77 |
-
unk_token="<|endoftext|>",
|
78 |
-
bos_token=None,
|
79 |
-
eos_token="<|endoftext|>",
|
80 |
-
pad_token="<|endoftext|>",
|
81 |
-
**kwargs,
|
82 |
-
):
|
83 |
-
# We need to at least pass vocab_file and merges_file to base class
|
84 |
-
# in case a slow tokenizer needs to be initialized; other can be
|
85 |
-
# configured through files.
|
86 |
-
# following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token
|
87 |
-
|
88 |
-
bos_token = (
|
89 |
-
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
90 |
-
if isinstance(bos_token, str)
|
91 |
-
else bos_token
|
92 |
-
)
|
93 |
-
eos_token = (
|
94 |
-
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
95 |
-
if isinstance(eos_token, str)
|
96 |
-
else eos_token
|
97 |
-
)
|
98 |
-
unk_token = (
|
99 |
-
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
100 |
-
if isinstance(unk_token, str)
|
101 |
-
else unk_token
|
102 |
-
)
|
103 |
-
pad_token = (
|
104 |
-
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
105 |
-
if isinstance(pad_token, str)
|
106 |
-
else pad_token
|
107 |
-
)
|
108 |
-
|
109 |
-
super().__init__(
|
110 |
-
vocab_file=vocab_file,
|
111 |
-
merges_file=merges_file,
|
112 |
-
tokenizer_file=tokenizer_file,
|
113 |
-
unk_token=unk_token,
|
114 |
-
bos_token=bos_token,
|
115 |
-
eos_token=eos_token,
|
116 |
-
pad_token=pad_token,
|
117 |
-
**kwargs,
|
118 |
-
)
|
119 |
-
|
120 |
-
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary
|
121 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
122 |
-
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
123 |
-
return tuple(files)
|
|
|
1 |
+
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Tokenization classes for Qwen2."""
|
5 |
+
|
6 |
+
from typing import Optional, Tuple
|
7 |
+
|
8 |
+
from transformers.tokenization_utils import AddedToken
|
9 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
10 |
+
from transformers.utils import logging
|
11 |
+
from .tokenization_qwen2 import Qwen2Tokenizer
|
12 |
+
|
13 |
+
|
14 |
+
logger = logging.get_logger(__name__)
|
15 |
+
|
16 |
+
VOCAB_FILES_NAMES = {
|
17 |
+
"vocab_file": "vocab.json",
|
18 |
+
"merges_file": "merges.txt",
|
19 |
+
"tokenizer_file": "tokenizer.json",
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
|
24 |
+
|
25 |
+
|
26 |
+
class Qwen2TokenizerFast(PreTrainedTokenizerFast):
|
27 |
+
"""
|
28 |
+
Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
|
29 |
+
Byte-Pair-Encoding.
|
30 |
+
|
31 |
+
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
|
32 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
33 |
+
|
34 |
+
```python
|
35 |
+
>>> from transformers import Qwen2TokenizerFast
|
36 |
+
|
37 |
+
>>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
|
38 |
+
>>> tokenizer("Hello world")["input_ids"]
|
39 |
+
[9707, 1879]
|
40 |
+
|
41 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
42 |
+
[21927, 1879]
|
43 |
+
```
|
44 |
+
This is expected.
|
45 |
+
|
46 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
47 |
+
refer to this superclass for more information regarding those methods.
|
48 |
+
|
49 |
+
Args:
|
50 |
+
vocab_file (`str`, *optional*):
|
51 |
+
Path to the vocabulary file.
|
52 |
+
merges_file (`str`, *optional*):
|
53 |
+
Path to the merges file.
|
54 |
+
tokenizer_file (`str`, *optional*):
|
55 |
+
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
|
56 |
+
contains everything needed to load the tokenizer.
|
57 |
+
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
58 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
59 |
+
token instead. Not applicable to this tokenizer.
|
60 |
+
bos_token (`str`, *optional*):
|
61 |
+
The beginning of sequence token. Not applicable for this tokenizer.
|
62 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
63 |
+
The end of sequence token.
|
64 |
+
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
65 |
+
The token used for padding, for example when batching sequences of different lengths.
|
66 |
+
"""
|
67 |
+
|
68 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
69 |
+
model_input_names = ["input_ids", "attention_mask"]
|
70 |
+
slow_tokenizer_class = Qwen2Tokenizer
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
vocab_file=None,
|
75 |
+
merges_file=None,
|
76 |
+
tokenizer_file=None,
|
77 |
+
unk_token="<|endoftext|>",
|
78 |
+
bos_token=None,
|
79 |
+
eos_token="<|endoftext|>",
|
80 |
+
pad_token="<|endoftext|>",
|
81 |
+
**kwargs,
|
82 |
+
):
|
83 |
+
# We need to at least pass vocab_file and merges_file to base class
|
84 |
+
# in case a slow tokenizer needs to be initialized; other can be
|
85 |
+
# configured through files.
|
86 |
+
# following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token
|
87 |
+
|
88 |
+
bos_token = (
|
89 |
+
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
90 |
+
if isinstance(bos_token, str)
|
91 |
+
else bos_token
|
92 |
+
)
|
93 |
+
eos_token = (
|
94 |
+
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
95 |
+
if isinstance(eos_token, str)
|
96 |
+
else eos_token
|
97 |
+
)
|
98 |
+
unk_token = (
|
99 |
+
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
100 |
+
if isinstance(unk_token, str)
|
101 |
+
else unk_token
|
102 |
+
)
|
103 |
+
pad_token = (
|
104 |
+
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
|
105 |
+
if isinstance(pad_token, str)
|
106 |
+
else pad_token
|
107 |
+
)
|
108 |
+
|
109 |
+
super().__init__(
|
110 |
+
vocab_file=vocab_file,
|
111 |
+
merges_file=merges_file,
|
112 |
+
tokenizer_file=tokenizer_file,
|
113 |
+
unk_token=unk_token,
|
114 |
+
bos_token=bos_token,
|
115 |
+
eos_token=eos_token,
|
116 |
+
pad_token=pad_token,
|
117 |
+
**kwargs,
|
118 |
+
)
|
119 |
+
|
120 |
+
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary
|
121 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
122 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
123 |
+
return tuple(files)
|
modeling/siglip/__init__.py
CHANGED
@@ -1,98 +1,98 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
from typing import TYPE_CHECKING
|
5 |
-
|
6 |
-
from transformers.utils import (
|
7 |
-
OptionalDependencyNotAvailable,
|
8 |
-
_LazyModule,
|
9 |
-
is_sentencepiece_available,
|
10 |
-
is_torch_available,
|
11 |
-
is_vision_available,
|
12 |
-
)
|
13 |
-
|
14 |
-
|
15 |
-
_import_structure = {
|
16 |
-
"configuration_siglip": [
|
17 |
-
"SiglipConfig",
|
18 |
-
"SiglipTextConfig",
|
19 |
-
"SiglipVisionConfig",
|
20 |
-
],
|
21 |
-
"processing_siglip": ["SiglipProcessor"],
|
22 |
-
}
|
23 |
-
|
24 |
-
try:
|
25 |
-
if not is_sentencepiece_available():
|
26 |
-
raise OptionalDependencyNotAvailable()
|
27 |
-
except OptionalDependencyNotAvailable:
|
28 |
-
pass
|
29 |
-
else:
|
30 |
-
_import_structure["tokenization_siglip"] = ["SiglipTokenizer"]
|
31 |
-
|
32 |
-
|
33 |
-
try:
|
34 |
-
if not is_vision_available():
|
35 |
-
raise OptionalDependencyNotAvailable()
|
36 |
-
except OptionalDependencyNotAvailable:
|
37 |
-
pass
|
38 |
-
else:
|
39 |
-
_import_structure["image_processing_siglip"] = ["SiglipImageProcessor"]
|
40 |
-
|
41 |
-
try:
|
42 |
-
if not is_torch_available():
|
43 |
-
raise OptionalDependencyNotAvailable()
|
44 |
-
except OptionalDependencyNotAvailable:
|
45 |
-
pass
|
46 |
-
else:
|
47 |
-
_import_structure["modeling_siglip"] = [
|
48 |
-
"SiglipModel",
|
49 |
-
"SiglipPreTrainedModel",
|
50 |
-
"SiglipTextModel",
|
51 |
-
"SiglipVisionModel",
|
52 |
-
"SiglipForImageClassification",
|
53 |
-
]
|
54 |
-
|
55 |
-
|
56 |
-
if TYPE_CHECKING:
|
57 |
-
from .configuration_siglip import (
|
58 |
-
SiglipConfig,
|
59 |
-
SiglipTextConfig,
|
60 |
-
SiglipVisionConfig,
|
61 |
-
)
|
62 |
-
from .processing_siglip import SiglipProcessor
|
63 |
-
|
64 |
-
try:
|
65 |
-
if not is_sentencepiece_available():
|
66 |
-
raise OptionalDependencyNotAvailable()
|
67 |
-
except OptionalDependencyNotAvailable:
|
68 |
-
pass
|
69 |
-
else:
|
70 |
-
from .tokenization_siglip import SiglipTokenizer
|
71 |
-
|
72 |
-
try:
|
73 |
-
if not is_vision_available():
|
74 |
-
raise OptionalDependencyNotAvailable()
|
75 |
-
except OptionalDependencyNotAvailable:
|
76 |
-
pass
|
77 |
-
else:
|
78 |
-
from .image_processing_siglip import SiglipImageProcessor
|
79 |
-
|
80 |
-
try:
|
81 |
-
if not is_torch_available():
|
82 |
-
raise OptionalDependencyNotAvailable()
|
83 |
-
except OptionalDependencyNotAvailable:
|
84 |
-
pass
|
85 |
-
else:
|
86 |
-
from .modeling_siglip import (
|
87 |
-
SiglipForImageClassification,
|
88 |
-
SiglipModel,
|
89 |
-
SiglipPreTrainedModel,
|
90 |
-
SiglipTextModel,
|
91 |
-
SiglipVisionModel,
|
92 |
-
)
|
93 |
-
|
94 |
-
|
95 |
-
else:
|
96 |
-
import sys
|
97 |
-
|
98 |
-
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
from typing import TYPE_CHECKING
|
5 |
+
|
6 |
+
from transformers.utils import (
|
7 |
+
OptionalDependencyNotAvailable,
|
8 |
+
_LazyModule,
|
9 |
+
is_sentencepiece_available,
|
10 |
+
is_torch_available,
|
11 |
+
is_vision_available,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
_import_structure = {
|
16 |
+
"configuration_siglip": [
|
17 |
+
"SiglipConfig",
|
18 |
+
"SiglipTextConfig",
|
19 |
+
"SiglipVisionConfig",
|
20 |
+
],
|
21 |
+
"processing_siglip": ["SiglipProcessor"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_sentencepiece_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["tokenization_siglip"] = ["SiglipTokenizer"]
|
31 |
+
|
32 |
+
|
33 |
+
try:
|
34 |
+
if not is_vision_available():
|
35 |
+
raise OptionalDependencyNotAvailable()
|
36 |
+
except OptionalDependencyNotAvailable:
|
37 |
+
pass
|
38 |
+
else:
|
39 |
+
_import_structure["image_processing_siglip"] = ["SiglipImageProcessor"]
|
40 |
+
|
41 |
+
try:
|
42 |
+
if not is_torch_available():
|
43 |
+
raise OptionalDependencyNotAvailable()
|
44 |
+
except OptionalDependencyNotAvailable:
|
45 |
+
pass
|
46 |
+
else:
|
47 |
+
_import_structure["modeling_siglip"] = [
|
48 |
+
"SiglipModel",
|
49 |
+
"SiglipPreTrainedModel",
|
50 |
+
"SiglipTextModel",
|
51 |
+
"SiglipVisionModel",
|
52 |
+
"SiglipForImageClassification",
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
if TYPE_CHECKING:
|
57 |
+
from .configuration_siglip import (
|
58 |
+
SiglipConfig,
|
59 |
+
SiglipTextConfig,
|
60 |
+
SiglipVisionConfig,
|
61 |
+
)
|
62 |
+
from .processing_siglip import SiglipProcessor
|
63 |
+
|
64 |
+
try:
|
65 |
+
if not is_sentencepiece_available():
|
66 |
+
raise OptionalDependencyNotAvailable()
|
67 |
+
except OptionalDependencyNotAvailable:
|
68 |
+
pass
|
69 |
+
else:
|
70 |
+
from .tokenization_siglip import SiglipTokenizer
|
71 |
+
|
72 |
+
try:
|
73 |
+
if not is_vision_available():
|
74 |
+
raise OptionalDependencyNotAvailable()
|
75 |
+
except OptionalDependencyNotAvailable:
|
76 |
+
pass
|
77 |
+
else:
|
78 |
+
from .image_processing_siglip import SiglipImageProcessor
|
79 |
+
|
80 |
+
try:
|
81 |
+
if not is_torch_available():
|
82 |
+
raise OptionalDependencyNotAvailable()
|
83 |
+
except OptionalDependencyNotAvailable:
|
84 |
+
pass
|
85 |
+
else:
|
86 |
+
from .modeling_siglip import (
|
87 |
+
SiglipForImageClassification,
|
88 |
+
SiglipModel,
|
89 |
+
SiglipPreTrainedModel,
|
90 |
+
SiglipTextModel,
|
91 |
+
SiglipVisionModel,
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
else:
|
96 |
+
import sys
|
97 |
+
|
98 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
modeling/siglip/configuration_siglip.py
CHANGED
@@ -1,287 +1,287 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""Siglip model configuration"""
|
5 |
-
|
6 |
-
import os
|
7 |
-
from typing import Union
|
8 |
-
|
9 |
-
from transformers.configuration_utils import PretrainedConfig
|
10 |
-
from transformers.utils import logging
|
11 |
-
|
12 |
-
|
13 |
-
logger = logging.get_logger(__name__)
|
14 |
-
|
15 |
-
|
16 |
-
class SiglipTextConfig(PretrainedConfig):
|
17 |
-
r"""
|
18 |
-
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
|
19 |
-
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
20 |
-
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
|
21 |
-
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
22 |
-
|
23 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
24 |
-
documentation from [`PretrainedConfig`] for more information.
|
25 |
-
|
26 |
-
Args:
|
27 |
-
vocab_size (`int`, *optional*, defaults to 32000):
|
28 |
-
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
|
29 |
-
the `inputs_ids` passed when calling [`SiglipModel`].
|
30 |
-
hidden_size (`int`, *optional*, defaults to 768):
|
31 |
-
Dimensionality of the encoder layers and the pooler layer.
|
32 |
-
intermediate_size (`int`, *optional*, defaults to 3072):
|
33 |
-
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
34 |
-
num_hidden_layers (`int`, *optional*, defaults to 12):
|
35 |
-
Number of hidden layers in the Transformer encoder.
|
36 |
-
num_attention_heads (`int`, *optional*, defaults to 12):
|
37 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
38 |
-
max_position_embeddings (`int`, *optional*, defaults to 64):
|
39 |
-
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
40 |
-
just in case (e.g., 512 or 1024 or 2048).
|
41 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
42 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
43 |
-
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
44 |
-
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
45 |
-
The epsilon used by the layer normalization layers.
|
46 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
47 |
-
The dropout ratio for the attention probabilities.
|
48 |
-
pad_token_id (`int`, *optional*, defaults to 1):
|
49 |
-
The id of the padding token in the vocabulary.
|
50 |
-
bos_token_id (`int`, *optional*, defaults to 49406):
|
51 |
-
The id of the beginning-of-sequence token in the vocabulary.
|
52 |
-
eos_token_id (`int`, *optional*, defaults to 49407):
|
53 |
-
The id of the end-of-sequence token in the vocabulary.
|
54 |
-
|
55 |
-
Example:
|
56 |
-
|
57 |
-
```python
|
58 |
-
>>> from transformers import SiglipTextConfig, SiglipTextModel
|
59 |
-
|
60 |
-
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
|
61 |
-
>>> configuration = SiglipTextConfig()
|
62 |
-
|
63 |
-
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
64 |
-
>>> model = SiglipTextModel(configuration)
|
65 |
-
|
66 |
-
>>> # Accessing the model configuration
|
67 |
-
>>> configuration = model.config
|
68 |
-
```"""
|
69 |
-
|
70 |
-
model_type = "siglip_text_model"
|
71 |
-
|
72 |
-
def __init__(
|
73 |
-
self,
|
74 |
-
vocab_size=32000,
|
75 |
-
hidden_size=768,
|
76 |
-
intermediate_size=3072,
|
77 |
-
num_hidden_layers=12,
|
78 |
-
num_attention_heads=12,
|
79 |
-
max_position_embeddings=64,
|
80 |
-
hidden_act="gelu_pytorch_tanh",
|
81 |
-
layer_norm_eps=1e-6,
|
82 |
-
attention_dropout=0.0,
|
83 |
-
# This differs from `CLIPTokenizer`'s default and from openai/siglip
|
84 |
-
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
85 |
-
pad_token_id=1,
|
86 |
-
bos_token_id=49406,
|
87 |
-
eos_token_id=49407,
|
88 |
-
**kwargs,
|
89 |
-
):
|
90 |
-
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
91 |
-
|
92 |
-
self.vocab_size = vocab_size
|
93 |
-
self.hidden_size = hidden_size
|
94 |
-
self.intermediate_size = intermediate_size
|
95 |
-
self.num_hidden_layers = num_hidden_layers
|
96 |
-
self.num_attention_heads = num_attention_heads
|
97 |
-
self.max_position_embeddings = max_position_embeddings
|
98 |
-
self.layer_norm_eps = layer_norm_eps
|
99 |
-
self.hidden_act = hidden_act
|
100 |
-
self.attention_dropout = attention_dropout
|
101 |
-
|
102 |
-
@classmethod
|
103 |
-
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
104 |
-
cls._set_token_in_kwargs(kwargs)
|
105 |
-
|
106 |
-
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
107 |
-
|
108 |
-
# get the text config dict if we are loading from SiglipConfig
|
109 |
-
if config_dict.get("model_type") == "siglip":
|
110 |
-
config_dict = config_dict["text_config"]
|
111 |
-
|
112 |
-
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
113 |
-
logger.warning(
|
114 |
-
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
115 |
-
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
116 |
-
)
|
117 |
-
|
118 |
-
return cls.from_dict(config_dict, **kwargs)
|
119 |
-
|
120 |
-
|
121 |
-
class SiglipVisionConfig(PretrainedConfig):
|
122 |
-
r"""
|
123 |
-
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
124 |
-
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
125 |
-
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
126 |
-
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
127 |
-
|
128 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
129 |
-
documentation from [`PretrainedConfig`] for more information.
|
130 |
-
|
131 |
-
Args:
|
132 |
-
hidden_size (`int`, *optional*, defaults to 768):
|
133 |
-
Dimensionality of the encoder layers and the pooler layer.
|
134 |
-
intermediate_size (`int`, *optional*, defaults to 3072):
|
135 |
-
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
136 |
-
num_hidden_layers (`int`, *optional*, defaults to 12):
|
137 |
-
Number of hidden layers in the Transformer encoder.
|
138 |
-
num_attention_heads (`int`, *optional*, defaults to 12):
|
139 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
140 |
-
num_channels (`int`, *optional*, defaults to 3):
|
141 |
-
Number of channels in the input images.
|
142 |
-
image_size (`int`, *optional*, defaults to 224):
|
143 |
-
The size (resolution) of each image.
|
144 |
-
patch_size (`int`, *optional*, defaults to 16):
|
145 |
-
The size (resolution) of each patch.
|
146 |
-
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
147 |
-
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
148 |
-
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
149 |
-
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
150 |
-
The epsilon used by the layer normalization layers.
|
151 |
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
152 |
-
The dropout ratio for the attention probabilities.
|
153 |
-
|
154 |
-
Example:
|
155 |
-
|
156 |
-
```python
|
157 |
-
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
158 |
-
|
159 |
-
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
160 |
-
>>> configuration = SiglipVisionConfig()
|
161 |
-
|
162 |
-
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
163 |
-
>>> model = SiglipVisionModel(configuration)
|
164 |
-
|
165 |
-
>>> # Accessing the model configuration
|
166 |
-
>>> configuration = model.config
|
167 |
-
```"""
|
168 |
-
|
169 |
-
model_type = "siglip_vision_model"
|
170 |
-
|
171 |
-
def __init__(
|
172 |
-
self,
|
173 |
-
hidden_size=768,
|
174 |
-
intermediate_size=3072,
|
175 |
-
num_hidden_layers=12,
|
176 |
-
num_attention_heads=12,
|
177 |
-
num_channels=3,
|
178 |
-
image_size=224,
|
179 |
-
patch_size=16,
|
180 |
-
hidden_act="gelu_pytorch_tanh",
|
181 |
-
layer_norm_eps=1e-6,
|
182 |
-
attention_dropout=0.0,
|
183 |
-
**kwargs,
|
184 |
-
):
|
185 |
-
super().__init__(**kwargs)
|
186 |
-
|
187 |
-
self.hidden_size = hidden_size
|
188 |
-
self.intermediate_size = intermediate_size
|
189 |
-
self.num_hidden_layers = num_hidden_layers
|
190 |
-
self.num_attention_heads = num_attention_heads
|
191 |
-
self.num_channels = num_channels
|
192 |
-
self.patch_size = patch_size
|
193 |
-
self.image_size = image_size
|
194 |
-
self.attention_dropout = attention_dropout
|
195 |
-
self.layer_norm_eps = layer_norm_eps
|
196 |
-
self.hidden_act = hidden_act
|
197 |
-
|
198 |
-
@classmethod
|
199 |
-
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
200 |
-
cls._set_token_in_kwargs(kwargs)
|
201 |
-
|
202 |
-
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
203 |
-
|
204 |
-
# get the vision config dict if we are loading from SiglipConfig
|
205 |
-
if config_dict.get("model_type") == "siglip":
|
206 |
-
config_dict = config_dict["vision_config"]
|
207 |
-
|
208 |
-
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
209 |
-
logger.warning(
|
210 |
-
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
211 |
-
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
212 |
-
)
|
213 |
-
|
214 |
-
return cls.from_dict(config_dict, **kwargs)
|
215 |
-
|
216 |
-
|
217 |
-
class SiglipConfig(PretrainedConfig):
|
218 |
-
r"""
|
219 |
-
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
|
220 |
-
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
|
221 |
-
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
|
222 |
-
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
223 |
-
|
224 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
225 |
-
documentation from [`PretrainedConfig`] for more information.
|
226 |
-
|
227 |
-
Args:
|
228 |
-
text_config (`dict`, *optional*):
|
229 |
-
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
|
230 |
-
vision_config (`dict`, *optional*):
|
231 |
-
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
|
232 |
-
kwargs (*optional*):
|
233 |
-
Dictionary of keyword arguments.
|
234 |
-
|
235 |
-
Example:
|
236 |
-
|
237 |
-
```python
|
238 |
-
>>> from transformers import SiglipConfig, SiglipModel
|
239 |
-
|
240 |
-
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
|
241 |
-
>>> configuration = SiglipConfig()
|
242 |
-
|
243 |
-
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
244 |
-
>>> model = SiglipModel(configuration)
|
245 |
-
|
246 |
-
>>> # Accessing the model configuration
|
247 |
-
>>> configuration = model.config
|
248 |
-
|
249 |
-
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
|
250 |
-
>>> from transformers import SiglipTextConfig, SiglipVisionConfig
|
251 |
-
|
252 |
-
>>> # Initializing a SiglipText and SiglipVision configuration
|
253 |
-
>>> config_text = SiglipTextConfig()
|
254 |
-
>>> config_vision = SiglipVisionConfig()
|
255 |
-
|
256 |
-
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
|
257 |
-
```"""
|
258 |
-
|
259 |
-
model_type = "siglip"
|
260 |
-
|
261 |
-
def __init__(self, text_config=None, vision_config=None, **kwargs):
|
262 |
-
super().__init__(**kwargs)
|
263 |
-
|
264 |
-
if text_config is None:
|
265 |
-
text_config = {}
|
266 |
-
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
|
267 |
-
|
268 |
-
if vision_config is None:
|
269 |
-
vision_config = {}
|
270 |
-
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.")
|
271 |
-
|
272 |
-
self.text_config = SiglipTextConfig(**text_config)
|
273 |
-
self.vision_config = SiglipVisionConfig(**vision_config)
|
274 |
-
|
275 |
-
self.initializer_factor = 1.0
|
276 |
-
|
277 |
-
@classmethod
|
278 |
-
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs):
|
279 |
-
r"""
|
280 |
-
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
|
281 |
-
model configuration.
|
282 |
-
|
283 |
-
Returns:
|
284 |
-
[`SiglipConfig`]: An instance of a configuration object
|
285 |
-
"""
|
286 |
-
|
287 |
-
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Siglip model configuration"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
from typing import Union
|
8 |
+
|
9 |
+
from transformers.configuration_utils import PretrainedConfig
|
10 |
+
from transformers.utils import logging
|
11 |
+
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
|
15 |
+
|
16 |
+
class SiglipTextConfig(PretrainedConfig):
|
17 |
+
r"""
|
18 |
+
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
|
19 |
+
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
20 |
+
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
|
21 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
22 |
+
|
23 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
24 |
+
documentation from [`PretrainedConfig`] for more information.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
28 |
+
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
|
29 |
+
the `inputs_ids` passed when calling [`SiglipModel`].
|
30 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
31 |
+
Dimensionality of the encoder layers and the pooler layer.
|
32 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
33 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
34 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
35 |
+
Number of hidden layers in the Transformer encoder.
|
36 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
37 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
38 |
+
max_position_embeddings (`int`, *optional*, defaults to 64):
|
39 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
40 |
+
just in case (e.g., 512 or 1024 or 2048).
|
41 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
42 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
43 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
44 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
45 |
+
The epsilon used by the layer normalization layers.
|
46 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
47 |
+
The dropout ratio for the attention probabilities.
|
48 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
49 |
+
The id of the padding token in the vocabulary.
|
50 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
51 |
+
The id of the beginning-of-sequence token in the vocabulary.
|
52 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
53 |
+
The id of the end-of-sequence token in the vocabulary.
|
54 |
+
|
55 |
+
Example:
|
56 |
+
|
57 |
+
```python
|
58 |
+
>>> from transformers import SiglipTextConfig, SiglipTextModel
|
59 |
+
|
60 |
+
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
|
61 |
+
>>> configuration = SiglipTextConfig()
|
62 |
+
|
63 |
+
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
64 |
+
>>> model = SiglipTextModel(configuration)
|
65 |
+
|
66 |
+
>>> # Accessing the model configuration
|
67 |
+
>>> configuration = model.config
|
68 |
+
```"""
|
69 |
+
|
70 |
+
model_type = "siglip_text_model"
|
71 |
+
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
vocab_size=32000,
|
75 |
+
hidden_size=768,
|
76 |
+
intermediate_size=3072,
|
77 |
+
num_hidden_layers=12,
|
78 |
+
num_attention_heads=12,
|
79 |
+
max_position_embeddings=64,
|
80 |
+
hidden_act="gelu_pytorch_tanh",
|
81 |
+
layer_norm_eps=1e-6,
|
82 |
+
attention_dropout=0.0,
|
83 |
+
# This differs from `CLIPTokenizer`'s default and from openai/siglip
|
84 |
+
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
85 |
+
pad_token_id=1,
|
86 |
+
bos_token_id=49406,
|
87 |
+
eos_token_id=49407,
|
88 |
+
**kwargs,
|
89 |
+
):
|
90 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
91 |
+
|
92 |
+
self.vocab_size = vocab_size
|
93 |
+
self.hidden_size = hidden_size
|
94 |
+
self.intermediate_size = intermediate_size
|
95 |
+
self.num_hidden_layers = num_hidden_layers
|
96 |
+
self.num_attention_heads = num_attention_heads
|
97 |
+
self.max_position_embeddings = max_position_embeddings
|
98 |
+
self.layer_norm_eps = layer_norm_eps
|
99 |
+
self.hidden_act = hidden_act
|
100 |
+
self.attention_dropout = attention_dropout
|
101 |
+
|
102 |
+
@classmethod
|
103 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
104 |
+
cls._set_token_in_kwargs(kwargs)
|
105 |
+
|
106 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
107 |
+
|
108 |
+
# get the text config dict if we are loading from SiglipConfig
|
109 |
+
if config_dict.get("model_type") == "siglip":
|
110 |
+
config_dict = config_dict["text_config"]
|
111 |
+
|
112 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
113 |
+
logger.warning(
|
114 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
115 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
116 |
+
)
|
117 |
+
|
118 |
+
return cls.from_dict(config_dict, **kwargs)
|
119 |
+
|
120 |
+
|
121 |
+
class SiglipVisionConfig(PretrainedConfig):
|
122 |
+
r"""
|
123 |
+
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
124 |
+
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
125 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
126 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
127 |
+
|
128 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
129 |
+
documentation from [`PretrainedConfig`] for more information.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
133 |
+
Dimensionality of the encoder layers and the pooler layer.
|
134 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
135 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
136 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
137 |
+
Number of hidden layers in the Transformer encoder.
|
138 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
139 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
140 |
+
num_channels (`int`, *optional*, defaults to 3):
|
141 |
+
Number of channels in the input images.
|
142 |
+
image_size (`int`, *optional*, defaults to 224):
|
143 |
+
The size (resolution) of each image.
|
144 |
+
patch_size (`int`, *optional*, defaults to 16):
|
145 |
+
The size (resolution) of each patch.
|
146 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
147 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
148 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
149 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
150 |
+
The epsilon used by the layer normalization layers.
|
151 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
152 |
+
The dropout ratio for the attention probabilities.
|
153 |
+
|
154 |
+
Example:
|
155 |
+
|
156 |
+
```python
|
157 |
+
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
158 |
+
|
159 |
+
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
160 |
+
>>> configuration = SiglipVisionConfig()
|
161 |
+
|
162 |
+
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
163 |
+
>>> model = SiglipVisionModel(configuration)
|
164 |
+
|
165 |
+
>>> # Accessing the model configuration
|
166 |
+
>>> configuration = model.config
|
167 |
+
```"""
|
168 |
+
|
169 |
+
model_type = "siglip_vision_model"
|
170 |
+
|
171 |
+
def __init__(
|
172 |
+
self,
|
173 |
+
hidden_size=768,
|
174 |
+
intermediate_size=3072,
|
175 |
+
num_hidden_layers=12,
|
176 |
+
num_attention_heads=12,
|
177 |
+
num_channels=3,
|
178 |
+
image_size=224,
|
179 |
+
patch_size=16,
|
180 |
+
hidden_act="gelu_pytorch_tanh",
|
181 |
+
layer_norm_eps=1e-6,
|
182 |
+
attention_dropout=0.0,
|
183 |
+
**kwargs,
|
184 |
+
):
|
185 |
+
super().__init__(**kwargs)
|
186 |
+
|
187 |
+
self.hidden_size = hidden_size
|
188 |
+
self.intermediate_size = intermediate_size
|
189 |
+
self.num_hidden_layers = num_hidden_layers
|
190 |
+
self.num_attention_heads = num_attention_heads
|
191 |
+
self.num_channels = num_channels
|
192 |
+
self.patch_size = patch_size
|
193 |
+
self.image_size = image_size
|
194 |
+
self.attention_dropout = attention_dropout
|
195 |
+
self.layer_norm_eps = layer_norm_eps
|
196 |
+
self.hidden_act = hidden_act
|
197 |
+
|
198 |
+
@classmethod
|
199 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
200 |
+
cls._set_token_in_kwargs(kwargs)
|
201 |
+
|
202 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
203 |
+
|
204 |
+
# get the vision config dict if we are loading from SiglipConfig
|
205 |
+
if config_dict.get("model_type") == "siglip":
|
206 |
+
config_dict = config_dict["vision_config"]
|
207 |
+
|
208 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
209 |
+
logger.warning(
|
210 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
211 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
212 |
+
)
|
213 |
+
|
214 |
+
return cls.from_dict(config_dict, **kwargs)
|
215 |
+
|
216 |
+
|
217 |
+
class SiglipConfig(PretrainedConfig):
|
218 |
+
r"""
|
219 |
+
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
|
220 |
+
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
|
221 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
|
222 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
223 |
+
|
224 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
225 |
+
documentation from [`PretrainedConfig`] for more information.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
text_config (`dict`, *optional*):
|
229 |
+
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
|
230 |
+
vision_config (`dict`, *optional*):
|
231 |
+
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
|
232 |
+
kwargs (*optional*):
|
233 |
+
Dictionary of keyword arguments.
|
234 |
+
|
235 |
+
Example:
|
236 |
+
|
237 |
+
```python
|
238 |
+
>>> from transformers import SiglipConfig, SiglipModel
|
239 |
+
|
240 |
+
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
|
241 |
+
>>> configuration = SiglipConfig()
|
242 |
+
|
243 |
+
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
244 |
+
>>> model = SiglipModel(configuration)
|
245 |
+
|
246 |
+
>>> # Accessing the model configuration
|
247 |
+
>>> configuration = model.config
|
248 |
+
|
249 |
+
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
|
250 |
+
>>> from transformers import SiglipTextConfig, SiglipVisionConfig
|
251 |
+
|
252 |
+
>>> # Initializing a SiglipText and SiglipVision configuration
|
253 |
+
>>> config_text = SiglipTextConfig()
|
254 |
+
>>> config_vision = SiglipVisionConfig()
|
255 |
+
|
256 |
+
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
|
257 |
+
```"""
|
258 |
+
|
259 |
+
model_type = "siglip"
|
260 |
+
|
261 |
+
def __init__(self, text_config=None, vision_config=None, **kwargs):
|
262 |
+
super().__init__(**kwargs)
|
263 |
+
|
264 |
+
if text_config is None:
|
265 |
+
text_config = {}
|
266 |
+
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
|
267 |
+
|
268 |
+
if vision_config is None:
|
269 |
+
vision_config = {}
|
270 |
+
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.")
|
271 |
+
|
272 |
+
self.text_config = SiglipTextConfig(**text_config)
|
273 |
+
self.vision_config = SiglipVisionConfig(**vision_config)
|
274 |
+
|
275 |
+
self.initializer_factor = 1.0
|
276 |
+
|
277 |
+
@classmethod
|
278 |
+
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs):
|
279 |
+
r"""
|
280 |
+
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
|
281 |
+
model configuration.
|
282 |
+
|
283 |
+
Returns:
|
284 |
+
[`SiglipConfig`]: An instance of a configuration object
|
285 |
+
"""
|
286 |
+
|
287 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
modeling/siglip/convert_siglip_to_hf.py
CHANGED
@@ -1,401 +1,401 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""Convert SigLIP checkpoints from the original repository.
|
5 |
-
|
6 |
-
URL: https://github.com/google-research/big_vision/tree/main
|
7 |
-
"""
|
8 |
-
|
9 |
-
import argparse
|
10 |
-
import collections
|
11 |
-
from pathlib import Path
|
12 |
-
|
13 |
-
import numpy as np
|
14 |
-
import requests
|
15 |
-
import torch
|
16 |
-
from huggingface_hub import hf_hub_download
|
17 |
-
from numpy import load
|
18 |
-
from PIL import Image
|
19 |
-
|
20 |
-
from transformers import SiglipConfig, SiglipImageProcessor, SiglipModel, SiglipProcessor, SiglipTokenizer
|
21 |
-
from transformers.utils import logging
|
22 |
-
|
23 |
-
|
24 |
-
logging.set_verbosity_info()
|
25 |
-
logger = logging.get_logger(__name__)
|
26 |
-
|
27 |
-
|
28 |
-
model_name_to_checkpoint = {
|
29 |
-
# base checkpoints
|
30 |
-
"siglip-base-patch16-224": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_224_63724782.npz",
|
31 |
-
"siglip-base-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_256_60500360.npz",
|
32 |
-
"siglip-base-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_384_68578854.npz",
|
33 |
-
"siglip-base-patch16-512": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_512_68580893.npz",
|
34 |
-
# large checkpoints
|
35 |
-
"siglip-large-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_256_60552751.npz",
|
36 |
-
"siglip-large-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_384_63634585.npz",
|
37 |
-
# multilingual checkpoint
|
38 |
-
"siglip-base-patch16-256-i18n": "/Users/nielsrogge/Documents/SigLIP/webli_i18n_b16_256_66117334.npz",
|
39 |
-
# so400m checkpoints
|
40 |
-
"siglip-so400m-patch14-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_so400m_384_58765454.npz",
|
41 |
-
}
|
42 |
-
|
43 |
-
model_name_to_image_size = {
|
44 |
-
"siglip-base-patch16-224": 224,
|
45 |
-
"siglip-base-patch16-256": 256,
|
46 |
-
"siglip-base-patch16-384": 384,
|
47 |
-
"siglip-base-patch16-512": 512,
|
48 |
-
"siglip-large-patch16-256": 256,
|
49 |
-
"siglip-large-patch16-384": 384,
|
50 |
-
"siglip-base-patch16-256-i18n": 256,
|
51 |
-
"siglip-so400m-patch14-384": 384,
|
52 |
-
}
|
53 |
-
|
54 |
-
|
55 |
-
def get_siglip_config(model_name):
|
56 |
-
config = SiglipConfig()
|
57 |
-
|
58 |
-
vocab_size = 250000 if "i18n" in model_name else 32000
|
59 |
-
image_size = model_name_to_image_size[model_name]
|
60 |
-
patch_size = 16 if "patch16" in model_name else 14
|
61 |
-
|
62 |
-
# size of the architecture
|
63 |
-
config.vision_config.image_size = image_size
|
64 |
-
config.vision_config.patch_size = patch_size
|
65 |
-
config.text_config.vocab_size = vocab_size
|
66 |
-
|
67 |
-
if "base" in model_name:
|
68 |
-
pass
|
69 |
-
elif "large" in model_name:
|
70 |
-
config.text_config.hidden_size = 1024
|
71 |
-
config.text_config.intermediate_size = 4096
|
72 |
-
config.text_config.num_hidden_layers = 24
|
73 |
-
config.text_config.num_attention_heads = 16
|
74 |
-
config.vision_config.hidden_size = 1024
|
75 |
-
config.vision_config.intermediate_size = 4096
|
76 |
-
config.vision_config.num_hidden_layers = 24
|
77 |
-
config.vision_config.num_attention_heads = 16
|
78 |
-
elif "so400m" in model_name:
|
79 |
-
config.text_config.hidden_size = 1152
|
80 |
-
config.text_config.intermediate_size = 4304
|
81 |
-
config.text_config.num_hidden_layers = 27
|
82 |
-
config.text_config.num_attention_heads = 16
|
83 |
-
config.vision_config.hidden_size = 1152
|
84 |
-
config.vision_config.intermediate_size = 4304
|
85 |
-
config.vision_config.num_hidden_layers = 27
|
86 |
-
config.vision_config.num_attention_heads = 16
|
87 |
-
else:
|
88 |
-
raise ValueError("Model not supported")
|
89 |
-
|
90 |
-
return config
|
91 |
-
|
92 |
-
|
93 |
-
def create_rename_keys(config):
|
94 |
-
rename_keys = []
|
95 |
-
# fmt: off
|
96 |
-
|
97 |
-
# vision encoder
|
98 |
-
|
99 |
-
rename_keys.append(("params/img/embedding/kernel", "vision_model.embeddings.patch_embedding.weight"))
|
100 |
-
rename_keys.append(("params/img/embedding/bias", "vision_model.embeddings.patch_embedding.bias"))
|
101 |
-
rename_keys.append(("params/img/pos_embedding", "vision_model.embeddings.position_embedding.weight"))
|
102 |
-
|
103 |
-
for i in range(config.vision_config.num_hidden_layers):
|
104 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/scale", f"vision_model.encoder.layers.{i}.layer_norm1.weight"))
|
105 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias"))
|
106 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/scale", f"vision_model.encoder.layers.{i}.layer_norm2.weight"))
|
107 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias"))
|
108 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"vision_model.encoder.layers.{i}.mlp.fc1.weight"))
|
109 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias"))
|
110 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"vision_model.encoder.layers.{i}.mlp.fc2.weight"))
|
111 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias"))
|
112 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"vision_model.encoder.layers.{i}.self_attn.k_proj.weight"))
|
113 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"vision_model.encoder.layers.{i}.self_attn.k_proj.bias"))
|
114 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"vision_model.encoder.layers.{i}.self_attn.v_proj.weight"))
|
115 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"vision_model.encoder.layers.{i}.self_attn.v_proj.bias"))
|
116 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"vision_model.encoder.layers.{i}.self_attn.q_proj.weight"))
|
117 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"vision_model.encoder.layers.{i}.self_attn.q_proj.bias"))
|
118 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"vision_model.encoder.layers.{i}.self_attn.out_proj.weight"))
|
119 |
-
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"vision_model.encoder.layers.{i}.self_attn.out_proj.bias"))
|
120 |
-
|
121 |
-
rename_keys.append(("params/img/Transformer/encoder_norm/scale", "vision_model.post_layernorm.weight"))
|
122 |
-
rename_keys.append(("params/img/Transformer/encoder_norm/bias", "vision_model.post_layernorm.bias"))
|
123 |
-
|
124 |
-
rename_keys.append(("params/img/MAPHead_0/probe", "vision_model.head.probe"))
|
125 |
-
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/scale", "vision_model.head.layernorm.weight"))
|
126 |
-
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/bias", "vision_model.head.layernorm.bias"))
|
127 |
-
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/kernel", "vision_model.head.mlp.fc1.weight"))
|
128 |
-
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/bias", "vision_model.head.mlp.fc1.bias"))
|
129 |
-
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/kernel", "vision_model.head.mlp.fc2.weight"))
|
130 |
-
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/bias", "vision_model.head.mlp.fc2.bias"))
|
131 |
-
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/kernel", "vision_model.head.attention.out_proj.weight"))
|
132 |
-
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/bias", "vision_model.head.attention.out_proj.bias"))
|
133 |
-
|
134 |
-
# text encoder
|
135 |
-
|
136 |
-
rename_keys.append(("params/txt/Embed_0/embedding", "text_model.embeddings.token_embedding.weight"))
|
137 |
-
rename_keys.append(("params/txt/pos_embedding", "text_model.embeddings.position_embedding.weight"))
|
138 |
-
|
139 |
-
for i in range(config.text_config.num_hidden_layers):
|
140 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/scale", f"text_model.encoder.layers.{i}.layer_norm1.weight"))
|
141 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/bias", f"text_model.encoder.layers.{i}.layer_norm1.bias"))
|
142 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/scale", f"text_model.encoder.layers.{i}.layer_norm2.weight"))
|
143 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/bias", f"text_model.encoder.layers.{i}.layer_norm2.bias"))
|
144 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"text_model.encoder.layers.{i}.mlp.fc1.weight"))
|
145 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"text_model.encoder.layers.{i}.mlp.fc1.bias"))
|
146 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"text_model.encoder.layers.{i}.mlp.fc2.weight"))
|
147 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"text_model.encoder.layers.{i}.mlp.fc2.bias"))
|
148 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"text_model.encoder.layers.{i}.self_attn.k_proj.weight"))
|
149 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"text_model.encoder.layers.{i}.self_attn.k_proj.bias"))
|
150 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"text_model.encoder.layers.{i}.self_attn.v_proj.weight"))
|
151 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"text_model.encoder.layers.{i}.self_attn.v_proj.bias"))
|
152 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"text_model.encoder.layers.{i}.self_attn.q_proj.weight"))
|
153 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"text_model.encoder.layers.{i}.self_attn.q_proj.bias"))
|
154 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"text_model.encoder.layers.{i}.self_attn.out_proj.weight"))
|
155 |
-
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"text_model.encoder.layers.{i}.self_attn.out_proj.bias"))
|
156 |
-
|
157 |
-
rename_keys.append(("params/txt/Encoder_0/encoder_norm/scale", "text_model.final_layer_norm.weight"))
|
158 |
-
rename_keys.append(("params/txt/Encoder_0/encoder_norm/bias", "text_model.final_layer_norm.bias"))
|
159 |
-
rename_keys.append(("params/txt/head/kernel", "text_model.head.weight"))
|
160 |
-
rename_keys.append(("params/txt/head/bias", "text_model.head.bias"))
|
161 |
-
|
162 |
-
# learned temperature and bias
|
163 |
-
rename_keys.append(("params/t", "logit_scale"))
|
164 |
-
rename_keys.append(("params/b", "logit_bias"))
|
165 |
-
|
166 |
-
# fmt: on
|
167 |
-
return rename_keys
|
168 |
-
|
169 |
-
|
170 |
-
def rename_key(dct, old, new, config):
|
171 |
-
val = dct.pop(old)
|
172 |
-
|
173 |
-
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "vision" in new:
|
174 |
-
val = val.reshape(-1, config.vision_config.hidden_size)
|
175 |
-
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "text" in new:
|
176 |
-
val = val.reshape(-1, config.text_config.hidden_size)
|
177 |
-
|
178 |
-
if "patch_embedding.weight" in new:
|
179 |
-
val = val.transpose(3, 2, 0, 1)
|
180 |
-
elif new.endswith("weight") and "position_embedding" not in new and "token_embedding" not in new:
|
181 |
-
val = val.T
|
182 |
-
|
183 |
-
if "position_embedding" in new and "vision" in new:
|
184 |
-
val = val.reshape(-1, config.vision_config.hidden_size)
|
185 |
-
if "position_embedding" in new and "text" in new:
|
186 |
-
val = val.reshape(-1, config.text_config.hidden_size)
|
187 |
-
|
188 |
-
if new.endswith("bias"):
|
189 |
-
val = val.reshape(-1)
|
190 |
-
|
191 |
-
dct[new] = torch.from_numpy(val)
|
192 |
-
|
193 |
-
|
194 |
-
def read_in_q_k_v_head(state_dict, config):
|
195 |
-
# read in individual input projection layers
|
196 |
-
key_proj_weight = (
|
197 |
-
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/kernel")
|
198 |
-
.reshape(-1, config.vision_config.hidden_size)
|
199 |
-
.T
|
200 |
-
)
|
201 |
-
key_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/bias").reshape(-1)
|
202 |
-
value_proj_weight = (
|
203 |
-
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/kernel")
|
204 |
-
.reshape(-1, config.vision_config.hidden_size)
|
205 |
-
.T
|
206 |
-
)
|
207 |
-
value_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/bias").reshape(-1)
|
208 |
-
query_proj_weight = (
|
209 |
-
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/kernel")
|
210 |
-
.reshape(-1, config.vision_config.hidden_size)
|
211 |
-
.T
|
212 |
-
)
|
213 |
-
query_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/bias").reshape(-1)
|
214 |
-
|
215 |
-
# next, add them to the state dict as a single matrix + vector
|
216 |
-
state_dict["vision_model.head.attention.in_proj_weight"] = torch.from_numpy(
|
217 |
-
np.concatenate([query_proj_weight, key_proj_weight, value_proj_weight], axis=0)
|
218 |
-
)
|
219 |
-
state_dict["vision_model.head.attention.in_proj_bias"] = torch.from_numpy(
|
220 |
-
np.concatenate([query_proj_bias, key_proj_bias, value_proj_bias], axis=0)
|
221 |
-
)
|
222 |
-
|
223 |
-
|
224 |
-
# We will verify our results on an image of cute cats
|
225 |
-
def prepare_img():
|
226 |
-
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
227 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
228 |
-
return image
|
229 |
-
|
230 |
-
|
231 |
-
def flatten_nested_dict(params, parent_key="", sep="/"):
|
232 |
-
items = []
|
233 |
-
|
234 |
-
for k, v in params.items():
|
235 |
-
new_key = parent_key + sep + k if parent_key else k
|
236 |
-
|
237 |
-
if isinstance(v, collections.abc.MutableMapping):
|
238 |
-
items.extend(flatten_nested_dict(v, new_key, sep=sep).items())
|
239 |
-
else:
|
240 |
-
items.append((new_key, v))
|
241 |
-
return dict(items)
|
242 |
-
|
243 |
-
|
244 |
-
@torch.no_grad()
|
245 |
-
def convert_siglip_checkpoint(model_name, pytorch_dump_folder_path, verify_logits=True, push_to_hub=False):
|
246 |
-
"""
|
247 |
-
Copy/paste/tweak model's weights to our SigLIP structure.
|
248 |
-
"""
|
249 |
-
|
250 |
-
# define default SigLIP configuration
|
251 |
-
config = get_siglip_config(model_name)
|
252 |
-
|
253 |
-
# get checkpoint
|
254 |
-
checkpoint = model_name_to_checkpoint[model_name]
|
255 |
-
|
256 |
-
# get vocab file
|
257 |
-
if "i18n" in model_name:
|
258 |
-
vocab_file = "/Users/nielsrogge/Documents/SigLIP/multilingual_vocab/sentencepiece.model"
|
259 |
-
else:
|
260 |
-
vocab_file = "/Users/nielsrogge/Documents/SigLIP/english_vocab/sentencepiece.model"
|
261 |
-
|
262 |
-
# load original state dict
|
263 |
-
data = load(checkpoint)
|
264 |
-
state_dict = flatten_nested_dict(data)
|
265 |
-
|
266 |
-
# remove and rename some keys
|
267 |
-
rename_keys = create_rename_keys(config)
|
268 |
-
for src, dest in rename_keys:
|
269 |
-
rename_key(state_dict, src, dest, config)
|
270 |
-
|
271 |
-
# qkv matrices of attention pooling head need special treatment
|
272 |
-
read_in_q_k_v_head(state_dict, config)
|
273 |
-
|
274 |
-
# load HuggingFace model
|
275 |
-
model = SiglipModel(config).eval()
|
276 |
-
model.load_state_dict(state_dict)
|
277 |
-
|
278 |
-
# create processor
|
279 |
-
# important: make tokenizer not return attention_mask since original one doesn't require it
|
280 |
-
image_size = config.vision_config.image_size
|
281 |
-
size = {"height": image_size, "width": image_size}
|
282 |
-
image_processor = SiglipImageProcessor(size=size)
|
283 |
-
tokenizer = SiglipTokenizer(vocab_file=vocab_file, model_input_names=["input_ids"])
|
284 |
-
processor = SiglipProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
285 |
-
|
286 |
-
# verify on dummy images and texts
|
287 |
-
url_1 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-ipod.jpg"
|
288 |
-
image_1 = Image.open(requests.get(url_1, stream=True).raw).convert("RGB")
|
289 |
-
url_2 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-blank.jpg"
|
290 |
-
image_2 = Image.open(requests.get(url_2, stream=True).raw).convert("RGB")
|
291 |
-
texts = ["an apple", "a picture of an apple"]
|
292 |
-
|
293 |
-
inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", padding="max_length")
|
294 |
-
|
295 |
-
# verify input_ids against original ones
|
296 |
-
if image_size == 224:
|
297 |
-
filename = "siglip_pixel_values.pt"
|
298 |
-
elif image_size == 256:
|
299 |
-
filename = "siglip_pixel_values_256.pt"
|
300 |
-
elif image_size == 384:
|
301 |
-
filename = "siglip_pixel_values_384.pt"
|
302 |
-
elif image_size == 512:
|
303 |
-
filename = "siglip_pixel_values_512.pt"
|
304 |
-
else:
|
305 |
-
raise ValueError("Image size not supported")
|
306 |
-
|
307 |
-
filepath = hf_hub_download(repo_id="nielsr/test-image", filename=filename, repo_type="dataset")
|
308 |
-
original_pixel_values = torch.load(filepath)
|
309 |
-
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="siglip_input_ids.pt", repo_type="dataset")
|
310 |
-
original_input_ids = torch.load(filepath)
|
311 |
-
|
312 |
-
if "i18n" not in model_name:
|
313 |
-
assert inputs.input_ids.tolist() == original_input_ids.tolist()
|
314 |
-
|
315 |
-
print("Mean of original pixel values:", original_pixel_values.mean())
|
316 |
-
print("Mean of new pixel values:", inputs.pixel_values.mean())
|
317 |
-
|
318 |
-
# note: we're testing with original pixel values here since we don't have exact pixel values
|
319 |
-
with torch.no_grad():
|
320 |
-
outputs = model(input_ids=inputs.input_ids, pixel_values=original_pixel_values)
|
321 |
-
|
322 |
-
# with torch.no_grad():
|
323 |
-
# outputs = model(input_ids=inputs.input_ids, pixel_values=inputs.pixel_values)
|
324 |
-
|
325 |
-
print(outputs.logits_per_image[:3, :3])
|
326 |
-
|
327 |
-
probs = torch.sigmoid(outputs.logits_per_image) # these are the probabilities
|
328 |
-
print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
329 |
-
print(f"{probs[0][1]:.1%} that image 0 is '{texts[1]}'")
|
330 |
-
|
331 |
-
if verify_logits:
|
332 |
-
if model_name == "siglip-base-patch16-224":
|
333 |
-
expected_slice = torch.tensor(
|
334 |
-
[[-2.9621, -2.1672], [-0.2713, 0.2910]],
|
335 |
-
)
|
336 |
-
elif model_name == "siglip-base-patch16-256":
|
337 |
-
expected_slice = torch.tensor(
|
338 |
-
[[-3.1146, -1.9894], [-0.7312, 0.6387]],
|
339 |
-
)
|
340 |
-
elif model_name == "siglip-base-patch16-384":
|
341 |
-
expected_slice = torch.tensor(
|
342 |
-
[[-2.8098, -2.1891], [-0.4242, 0.4102]],
|
343 |
-
)
|
344 |
-
elif model_name == "siglip-base-patch16-512":
|
345 |
-
expected_slice = torch.tensor(
|
346 |
-
[[-2.7899, -2.2668], [-0.4295, -0.0735]],
|
347 |
-
)
|
348 |
-
elif model_name == "siglip-large-patch16-256":
|
349 |
-
expected_slice = torch.tensor(
|
350 |
-
[[-1.5827, -0.5801], [-0.9153, 0.1363]],
|
351 |
-
)
|
352 |
-
elif model_name == "siglip-large-patch16-384":
|
353 |
-
expected_slice = torch.tensor(
|
354 |
-
[[-2.1523, -0.2899], [-0.2959, 0.7884]],
|
355 |
-
)
|
356 |
-
elif model_name == "siglip-so400m-patch14-384":
|
357 |
-
expected_slice = torch.tensor([[-1.2441, -0.6649], [-0.7060, 0.7374]])
|
358 |
-
elif model_name == "siglip-base-patch16-256-i18n":
|
359 |
-
expected_slice = torch.tensor(
|
360 |
-
[[-0.9064, 0.1073], [-0.0299, 0.5304]],
|
361 |
-
)
|
362 |
-
|
363 |
-
assert torch.allclose(outputs.logits_per_image[:3, :3], expected_slice, atol=1e-4)
|
364 |
-
print("Looks ok!")
|
365 |
-
|
366 |
-
if pytorch_dump_folder_path is not None:
|
367 |
-
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
368 |
-
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
|
369 |
-
model.save_pretrained(pytorch_dump_folder_path)
|
370 |
-
print(f"Saving processor to {pytorch_dump_folder_path}")
|
371 |
-
processor.save_pretrained(pytorch_dump_folder_path)
|
372 |
-
|
373 |
-
if push_to_hub:
|
374 |
-
model.push_to_hub(f"nielsr/{model_name}")
|
375 |
-
processor.push_to_hub(f"nielsr/{model_name}")
|
376 |
-
|
377 |
-
|
378 |
-
if __name__ == "__main__":
|
379 |
-
parser = argparse.ArgumentParser()
|
380 |
-
# Required parameters
|
381 |
-
parser.add_argument(
|
382 |
-
"--model_name",
|
383 |
-
default="siglip-base-patch16-224",
|
384 |
-
type=str,
|
385 |
-
choices=model_name_to_checkpoint.keys(),
|
386 |
-
help="Name of the model you'd like to convert.",
|
387 |
-
)
|
388 |
-
parser.add_argument(
|
389 |
-
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
390 |
-
)
|
391 |
-
parser.add_argument(
|
392 |
-
"--verify_logits",
|
393 |
-
action="store_false",
|
394 |
-
help="Whether to verify logits against the original implementation.",
|
395 |
-
)
|
396 |
-
parser.add_argument(
|
397 |
-
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
398 |
-
)
|
399 |
-
|
400 |
-
args = parser.parse_args()
|
401 |
-
convert_siglip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.verify_logits, args.push_to_hub)
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Convert SigLIP checkpoints from the original repository.
|
5 |
+
|
6 |
+
URL: https://github.com/google-research/big_vision/tree/main
|
7 |
+
"""
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import collections
|
11 |
+
from pathlib import Path
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import requests
|
15 |
+
import torch
|
16 |
+
from huggingface_hub import hf_hub_download
|
17 |
+
from numpy import load
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
from transformers import SiglipConfig, SiglipImageProcessor, SiglipModel, SiglipProcessor, SiglipTokenizer
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logging.set_verbosity_info()
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
model_name_to_checkpoint = {
|
29 |
+
# base checkpoints
|
30 |
+
"siglip-base-patch16-224": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_224_63724782.npz",
|
31 |
+
"siglip-base-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_256_60500360.npz",
|
32 |
+
"siglip-base-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_384_68578854.npz",
|
33 |
+
"siglip-base-patch16-512": "/Users/nielsrogge/Documents/SigLIP/webli_en_b16_512_68580893.npz",
|
34 |
+
# large checkpoints
|
35 |
+
"siglip-large-patch16-256": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_256_60552751.npz",
|
36 |
+
"siglip-large-patch16-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_l16_384_63634585.npz",
|
37 |
+
# multilingual checkpoint
|
38 |
+
"siglip-base-patch16-256-i18n": "/Users/nielsrogge/Documents/SigLIP/webli_i18n_b16_256_66117334.npz",
|
39 |
+
# so400m checkpoints
|
40 |
+
"siglip-so400m-patch14-384": "/Users/nielsrogge/Documents/SigLIP/webli_en_so400m_384_58765454.npz",
|
41 |
+
}
|
42 |
+
|
43 |
+
model_name_to_image_size = {
|
44 |
+
"siglip-base-patch16-224": 224,
|
45 |
+
"siglip-base-patch16-256": 256,
|
46 |
+
"siglip-base-patch16-384": 384,
|
47 |
+
"siglip-base-patch16-512": 512,
|
48 |
+
"siglip-large-patch16-256": 256,
|
49 |
+
"siglip-large-patch16-384": 384,
|
50 |
+
"siglip-base-patch16-256-i18n": 256,
|
51 |
+
"siglip-so400m-patch14-384": 384,
|
52 |
+
}
|
53 |
+
|
54 |
+
|
55 |
+
def get_siglip_config(model_name):
|
56 |
+
config = SiglipConfig()
|
57 |
+
|
58 |
+
vocab_size = 250000 if "i18n" in model_name else 32000
|
59 |
+
image_size = model_name_to_image_size[model_name]
|
60 |
+
patch_size = 16 if "patch16" in model_name else 14
|
61 |
+
|
62 |
+
# size of the architecture
|
63 |
+
config.vision_config.image_size = image_size
|
64 |
+
config.vision_config.patch_size = patch_size
|
65 |
+
config.text_config.vocab_size = vocab_size
|
66 |
+
|
67 |
+
if "base" in model_name:
|
68 |
+
pass
|
69 |
+
elif "large" in model_name:
|
70 |
+
config.text_config.hidden_size = 1024
|
71 |
+
config.text_config.intermediate_size = 4096
|
72 |
+
config.text_config.num_hidden_layers = 24
|
73 |
+
config.text_config.num_attention_heads = 16
|
74 |
+
config.vision_config.hidden_size = 1024
|
75 |
+
config.vision_config.intermediate_size = 4096
|
76 |
+
config.vision_config.num_hidden_layers = 24
|
77 |
+
config.vision_config.num_attention_heads = 16
|
78 |
+
elif "so400m" in model_name:
|
79 |
+
config.text_config.hidden_size = 1152
|
80 |
+
config.text_config.intermediate_size = 4304
|
81 |
+
config.text_config.num_hidden_layers = 27
|
82 |
+
config.text_config.num_attention_heads = 16
|
83 |
+
config.vision_config.hidden_size = 1152
|
84 |
+
config.vision_config.intermediate_size = 4304
|
85 |
+
config.vision_config.num_hidden_layers = 27
|
86 |
+
config.vision_config.num_attention_heads = 16
|
87 |
+
else:
|
88 |
+
raise ValueError("Model not supported")
|
89 |
+
|
90 |
+
return config
|
91 |
+
|
92 |
+
|
93 |
+
def create_rename_keys(config):
|
94 |
+
rename_keys = []
|
95 |
+
# fmt: off
|
96 |
+
|
97 |
+
# vision encoder
|
98 |
+
|
99 |
+
rename_keys.append(("params/img/embedding/kernel", "vision_model.embeddings.patch_embedding.weight"))
|
100 |
+
rename_keys.append(("params/img/embedding/bias", "vision_model.embeddings.patch_embedding.bias"))
|
101 |
+
rename_keys.append(("params/img/pos_embedding", "vision_model.embeddings.position_embedding.weight"))
|
102 |
+
|
103 |
+
for i in range(config.vision_config.num_hidden_layers):
|
104 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/scale", f"vision_model.encoder.layers.{i}.layer_norm1.weight"))
|
105 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_0/bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias"))
|
106 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/scale", f"vision_model.encoder.layers.{i}.layer_norm2.weight"))
|
107 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/LayerNorm_1/bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias"))
|
108 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"vision_model.encoder.layers.{i}.mlp.fc1.weight"))
|
109 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias"))
|
110 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"vision_model.encoder.layers.{i}.mlp.fc2.weight"))
|
111 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias"))
|
112 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"vision_model.encoder.layers.{i}.self_attn.k_proj.weight"))
|
113 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"vision_model.encoder.layers.{i}.self_attn.k_proj.bias"))
|
114 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"vision_model.encoder.layers.{i}.self_attn.v_proj.weight"))
|
115 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"vision_model.encoder.layers.{i}.self_attn.v_proj.bias"))
|
116 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"vision_model.encoder.layers.{i}.self_attn.q_proj.weight"))
|
117 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"vision_model.encoder.layers.{i}.self_attn.q_proj.bias"))
|
118 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"vision_model.encoder.layers.{i}.self_attn.out_proj.weight"))
|
119 |
+
rename_keys.append((f"params/img/Transformer/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"vision_model.encoder.layers.{i}.self_attn.out_proj.bias"))
|
120 |
+
|
121 |
+
rename_keys.append(("params/img/Transformer/encoder_norm/scale", "vision_model.post_layernorm.weight"))
|
122 |
+
rename_keys.append(("params/img/Transformer/encoder_norm/bias", "vision_model.post_layernorm.bias"))
|
123 |
+
|
124 |
+
rename_keys.append(("params/img/MAPHead_0/probe", "vision_model.head.probe"))
|
125 |
+
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/scale", "vision_model.head.layernorm.weight"))
|
126 |
+
rename_keys.append(("params/img/MAPHead_0/LayerNorm_0/bias", "vision_model.head.layernorm.bias"))
|
127 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/kernel", "vision_model.head.mlp.fc1.weight"))
|
128 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_0/bias", "vision_model.head.mlp.fc1.bias"))
|
129 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/kernel", "vision_model.head.mlp.fc2.weight"))
|
130 |
+
rename_keys.append(("params/img/MAPHead_0/MlpBlock_0/Dense_1/bias", "vision_model.head.mlp.fc2.bias"))
|
131 |
+
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/kernel", "vision_model.head.attention.out_proj.weight"))
|
132 |
+
rename_keys.append(("params/img/MAPHead_0/MultiHeadDotProductAttention_0/out/bias", "vision_model.head.attention.out_proj.bias"))
|
133 |
+
|
134 |
+
# text encoder
|
135 |
+
|
136 |
+
rename_keys.append(("params/txt/Embed_0/embedding", "text_model.embeddings.token_embedding.weight"))
|
137 |
+
rename_keys.append(("params/txt/pos_embedding", "text_model.embeddings.position_embedding.weight"))
|
138 |
+
|
139 |
+
for i in range(config.text_config.num_hidden_layers):
|
140 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/scale", f"text_model.encoder.layers.{i}.layer_norm1.weight"))
|
141 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_0/bias", f"text_model.encoder.layers.{i}.layer_norm1.bias"))
|
142 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/scale", f"text_model.encoder.layers.{i}.layer_norm2.weight"))
|
143 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/LayerNorm_1/bias", f"text_model.encoder.layers.{i}.layer_norm2.bias"))
|
144 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/kernel", f"text_model.encoder.layers.{i}.mlp.fc1.weight"))
|
145 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_0/bias", f"text_model.encoder.layers.{i}.mlp.fc1.bias"))
|
146 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/kernel", f"text_model.encoder.layers.{i}.mlp.fc2.weight"))
|
147 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MlpBlock_0/Dense_1/bias", f"text_model.encoder.layers.{i}.mlp.fc2.bias"))
|
148 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/kernel", f"text_model.encoder.layers.{i}.self_attn.k_proj.weight"))
|
149 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/key/bias", f"text_model.encoder.layers.{i}.self_attn.k_proj.bias"))
|
150 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/kernel", f"text_model.encoder.layers.{i}.self_attn.v_proj.weight"))
|
151 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/value/bias", f"text_model.encoder.layers.{i}.self_attn.v_proj.bias"))
|
152 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/kernel", f"text_model.encoder.layers.{i}.self_attn.q_proj.weight"))
|
153 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/query/bias", f"text_model.encoder.layers.{i}.self_attn.q_proj.bias"))
|
154 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/kernel", f"text_model.encoder.layers.{i}.self_attn.out_proj.weight"))
|
155 |
+
rename_keys.append((f"params/txt/Encoder_0/encoderblock_{i}/MultiHeadDotProductAttention_0/out/bias", f"text_model.encoder.layers.{i}.self_attn.out_proj.bias"))
|
156 |
+
|
157 |
+
rename_keys.append(("params/txt/Encoder_0/encoder_norm/scale", "text_model.final_layer_norm.weight"))
|
158 |
+
rename_keys.append(("params/txt/Encoder_0/encoder_norm/bias", "text_model.final_layer_norm.bias"))
|
159 |
+
rename_keys.append(("params/txt/head/kernel", "text_model.head.weight"))
|
160 |
+
rename_keys.append(("params/txt/head/bias", "text_model.head.bias"))
|
161 |
+
|
162 |
+
# learned temperature and bias
|
163 |
+
rename_keys.append(("params/t", "logit_scale"))
|
164 |
+
rename_keys.append(("params/b", "logit_bias"))
|
165 |
+
|
166 |
+
# fmt: on
|
167 |
+
return rename_keys
|
168 |
+
|
169 |
+
|
170 |
+
def rename_key(dct, old, new, config):
|
171 |
+
val = dct.pop(old)
|
172 |
+
|
173 |
+
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "vision" in new:
|
174 |
+
val = val.reshape(-1, config.vision_config.hidden_size)
|
175 |
+
if ("out_proj" in new or "v_proj" in new or "k_proj" in new or "q_proj" in new) and "text" in new:
|
176 |
+
val = val.reshape(-1, config.text_config.hidden_size)
|
177 |
+
|
178 |
+
if "patch_embedding.weight" in new:
|
179 |
+
val = val.transpose(3, 2, 0, 1)
|
180 |
+
elif new.endswith("weight") and "position_embedding" not in new and "token_embedding" not in new:
|
181 |
+
val = val.T
|
182 |
+
|
183 |
+
if "position_embedding" in new and "vision" in new:
|
184 |
+
val = val.reshape(-1, config.vision_config.hidden_size)
|
185 |
+
if "position_embedding" in new and "text" in new:
|
186 |
+
val = val.reshape(-1, config.text_config.hidden_size)
|
187 |
+
|
188 |
+
if new.endswith("bias"):
|
189 |
+
val = val.reshape(-1)
|
190 |
+
|
191 |
+
dct[new] = torch.from_numpy(val)
|
192 |
+
|
193 |
+
|
194 |
+
def read_in_q_k_v_head(state_dict, config):
|
195 |
+
# read in individual input projection layers
|
196 |
+
key_proj_weight = (
|
197 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/kernel")
|
198 |
+
.reshape(-1, config.vision_config.hidden_size)
|
199 |
+
.T
|
200 |
+
)
|
201 |
+
key_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/key/bias").reshape(-1)
|
202 |
+
value_proj_weight = (
|
203 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/kernel")
|
204 |
+
.reshape(-1, config.vision_config.hidden_size)
|
205 |
+
.T
|
206 |
+
)
|
207 |
+
value_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/value/bias").reshape(-1)
|
208 |
+
query_proj_weight = (
|
209 |
+
state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/kernel")
|
210 |
+
.reshape(-1, config.vision_config.hidden_size)
|
211 |
+
.T
|
212 |
+
)
|
213 |
+
query_proj_bias = state_dict.pop("params/img/MAPHead_0/MultiHeadDotProductAttention_0/query/bias").reshape(-1)
|
214 |
+
|
215 |
+
# next, add them to the state dict as a single matrix + vector
|
216 |
+
state_dict["vision_model.head.attention.in_proj_weight"] = torch.from_numpy(
|
217 |
+
np.concatenate([query_proj_weight, key_proj_weight, value_proj_weight], axis=0)
|
218 |
+
)
|
219 |
+
state_dict["vision_model.head.attention.in_proj_bias"] = torch.from_numpy(
|
220 |
+
np.concatenate([query_proj_bias, key_proj_bias, value_proj_bias], axis=0)
|
221 |
+
)
|
222 |
+
|
223 |
+
|
224 |
+
# We will verify our results on an image of cute cats
|
225 |
+
def prepare_img():
|
226 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
227 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
228 |
+
return image
|
229 |
+
|
230 |
+
|
231 |
+
def flatten_nested_dict(params, parent_key="", sep="/"):
|
232 |
+
items = []
|
233 |
+
|
234 |
+
for k, v in params.items():
|
235 |
+
new_key = parent_key + sep + k if parent_key else k
|
236 |
+
|
237 |
+
if isinstance(v, collections.abc.MutableMapping):
|
238 |
+
items.extend(flatten_nested_dict(v, new_key, sep=sep).items())
|
239 |
+
else:
|
240 |
+
items.append((new_key, v))
|
241 |
+
return dict(items)
|
242 |
+
|
243 |
+
|
244 |
+
@torch.no_grad()
|
245 |
+
def convert_siglip_checkpoint(model_name, pytorch_dump_folder_path, verify_logits=True, push_to_hub=False):
|
246 |
+
"""
|
247 |
+
Copy/paste/tweak model's weights to our SigLIP structure.
|
248 |
+
"""
|
249 |
+
|
250 |
+
# define default SigLIP configuration
|
251 |
+
config = get_siglip_config(model_name)
|
252 |
+
|
253 |
+
# get checkpoint
|
254 |
+
checkpoint = model_name_to_checkpoint[model_name]
|
255 |
+
|
256 |
+
# get vocab file
|
257 |
+
if "i18n" in model_name:
|
258 |
+
vocab_file = "/Users/nielsrogge/Documents/SigLIP/multilingual_vocab/sentencepiece.model"
|
259 |
+
else:
|
260 |
+
vocab_file = "/Users/nielsrogge/Documents/SigLIP/english_vocab/sentencepiece.model"
|
261 |
+
|
262 |
+
# load original state dict
|
263 |
+
data = load(checkpoint)
|
264 |
+
state_dict = flatten_nested_dict(data)
|
265 |
+
|
266 |
+
# remove and rename some keys
|
267 |
+
rename_keys = create_rename_keys(config)
|
268 |
+
for src, dest in rename_keys:
|
269 |
+
rename_key(state_dict, src, dest, config)
|
270 |
+
|
271 |
+
# qkv matrices of attention pooling head need special treatment
|
272 |
+
read_in_q_k_v_head(state_dict, config)
|
273 |
+
|
274 |
+
# load HuggingFace model
|
275 |
+
model = SiglipModel(config).eval()
|
276 |
+
model.load_state_dict(state_dict)
|
277 |
+
|
278 |
+
# create processor
|
279 |
+
# important: make tokenizer not return attention_mask since original one doesn't require it
|
280 |
+
image_size = config.vision_config.image_size
|
281 |
+
size = {"height": image_size, "width": image_size}
|
282 |
+
image_processor = SiglipImageProcessor(size=size)
|
283 |
+
tokenizer = SiglipTokenizer(vocab_file=vocab_file, model_input_names=["input_ids"])
|
284 |
+
processor = SiglipProcessor(image_processor=image_processor, tokenizer=tokenizer)
|
285 |
+
|
286 |
+
# verify on dummy images and texts
|
287 |
+
url_1 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-ipod.jpg"
|
288 |
+
image_1 = Image.open(requests.get(url_1, stream=True).raw).convert("RGB")
|
289 |
+
url_2 = "https://cdn.openai.com/multimodal-neurons/assets/apple/apple-blank.jpg"
|
290 |
+
image_2 = Image.open(requests.get(url_2, stream=True).raw).convert("RGB")
|
291 |
+
texts = ["an apple", "a picture of an apple"]
|
292 |
+
|
293 |
+
inputs = processor(images=[image_1, image_2], text=texts, return_tensors="pt", padding="max_length")
|
294 |
+
|
295 |
+
# verify input_ids against original ones
|
296 |
+
if image_size == 224:
|
297 |
+
filename = "siglip_pixel_values.pt"
|
298 |
+
elif image_size == 256:
|
299 |
+
filename = "siglip_pixel_values_256.pt"
|
300 |
+
elif image_size == 384:
|
301 |
+
filename = "siglip_pixel_values_384.pt"
|
302 |
+
elif image_size == 512:
|
303 |
+
filename = "siglip_pixel_values_512.pt"
|
304 |
+
else:
|
305 |
+
raise ValueError("Image size not supported")
|
306 |
+
|
307 |
+
filepath = hf_hub_download(repo_id="nielsr/test-image", filename=filename, repo_type="dataset")
|
308 |
+
original_pixel_values = torch.load(filepath)
|
309 |
+
filepath = hf_hub_download(repo_id="nielsr/test-image", filename="siglip_input_ids.pt", repo_type="dataset")
|
310 |
+
original_input_ids = torch.load(filepath)
|
311 |
+
|
312 |
+
if "i18n" not in model_name:
|
313 |
+
assert inputs.input_ids.tolist() == original_input_ids.tolist()
|
314 |
+
|
315 |
+
print("Mean of original pixel values:", original_pixel_values.mean())
|
316 |
+
print("Mean of new pixel values:", inputs.pixel_values.mean())
|
317 |
+
|
318 |
+
# note: we're testing with original pixel values here since we don't have exact pixel values
|
319 |
+
with torch.no_grad():
|
320 |
+
outputs = model(input_ids=inputs.input_ids, pixel_values=original_pixel_values)
|
321 |
+
|
322 |
+
# with torch.no_grad():
|
323 |
+
# outputs = model(input_ids=inputs.input_ids, pixel_values=inputs.pixel_values)
|
324 |
+
|
325 |
+
print(outputs.logits_per_image[:3, :3])
|
326 |
+
|
327 |
+
probs = torch.sigmoid(outputs.logits_per_image) # these are the probabilities
|
328 |
+
print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
329 |
+
print(f"{probs[0][1]:.1%} that image 0 is '{texts[1]}'")
|
330 |
+
|
331 |
+
if verify_logits:
|
332 |
+
if model_name == "siglip-base-patch16-224":
|
333 |
+
expected_slice = torch.tensor(
|
334 |
+
[[-2.9621, -2.1672], [-0.2713, 0.2910]],
|
335 |
+
)
|
336 |
+
elif model_name == "siglip-base-patch16-256":
|
337 |
+
expected_slice = torch.tensor(
|
338 |
+
[[-3.1146, -1.9894], [-0.7312, 0.6387]],
|
339 |
+
)
|
340 |
+
elif model_name == "siglip-base-patch16-384":
|
341 |
+
expected_slice = torch.tensor(
|
342 |
+
[[-2.8098, -2.1891], [-0.4242, 0.4102]],
|
343 |
+
)
|
344 |
+
elif model_name == "siglip-base-patch16-512":
|
345 |
+
expected_slice = torch.tensor(
|
346 |
+
[[-2.7899, -2.2668], [-0.4295, -0.0735]],
|
347 |
+
)
|
348 |
+
elif model_name == "siglip-large-patch16-256":
|
349 |
+
expected_slice = torch.tensor(
|
350 |
+
[[-1.5827, -0.5801], [-0.9153, 0.1363]],
|
351 |
+
)
|
352 |
+
elif model_name == "siglip-large-patch16-384":
|
353 |
+
expected_slice = torch.tensor(
|
354 |
+
[[-2.1523, -0.2899], [-0.2959, 0.7884]],
|
355 |
+
)
|
356 |
+
elif model_name == "siglip-so400m-patch14-384":
|
357 |
+
expected_slice = torch.tensor([[-1.2441, -0.6649], [-0.7060, 0.7374]])
|
358 |
+
elif model_name == "siglip-base-patch16-256-i18n":
|
359 |
+
expected_slice = torch.tensor(
|
360 |
+
[[-0.9064, 0.1073], [-0.0299, 0.5304]],
|
361 |
+
)
|
362 |
+
|
363 |
+
assert torch.allclose(outputs.logits_per_image[:3, :3], expected_slice, atol=1e-4)
|
364 |
+
print("Looks ok!")
|
365 |
+
|
366 |
+
if pytorch_dump_folder_path is not None:
|
367 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
368 |
+
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
|
369 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
370 |
+
print(f"Saving processor to {pytorch_dump_folder_path}")
|
371 |
+
processor.save_pretrained(pytorch_dump_folder_path)
|
372 |
+
|
373 |
+
if push_to_hub:
|
374 |
+
model.push_to_hub(f"nielsr/{model_name}")
|
375 |
+
processor.push_to_hub(f"nielsr/{model_name}")
|
376 |
+
|
377 |
+
|
378 |
+
if __name__ == "__main__":
|
379 |
+
parser = argparse.ArgumentParser()
|
380 |
+
# Required parameters
|
381 |
+
parser.add_argument(
|
382 |
+
"--model_name",
|
383 |
+
default="siglip-base-patch16-224",
|
384 |
+
type=str,
|
385 |
+
choices=model_name_to_checkpoint.keys(),
|
386 |
+
help="Name of the model you'd like to convert.",
|
387 |
+
)
|
388 |
+
parser.add_argument(
|
389 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
390 |
+
)
|
391 |
+
parser.add_argument(
|
392 |
+
"--verify_logits",
|
393 |
+
action="store_false",
|
394 |
+
help="Whether to verify logits against the original implementation.",
|
395 |
+
)
|
396 |
+
parser.add_argument(
|
397 |
+
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
|
398 |
+
)
|
399 |
+
|
400 |
+
args = parser.parse_args()
|
401 |
+
convert_siglip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.verify_logits, args.push_to_hub)
|
modeling/siglip/image_processing_siglip.py
CHANGED
@@ -1,230 +1,230 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""Image processor class for SigLIP."""
|
5 |
-
|
6 |
-
from typing import Dict, List, Optional, Union
|
7 |
-
|
8 |
-
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
9 |
-
from transformers.image_transforms import (
|
10 |
-
convert_to_rgb,
|
11 |
-
resize,
|
12 |
-
to_channel_dimension_format,
|
13 |
-
)
|
14 |
-
from transformers.image_utils import (
|
15 |
-
IMAGENET_STANDARD_MEAN,
|
16 |
-
IMAGENET_STANDARD_STD,
|
17 |
-
ChannelDimension,
|
18 |
-
ImageInput,
|
19 |
-
PILImageResampling,
|
20 |
-
infer_channel_dimension_format,
|
21 |
-
is_scaled_image,
|
22 |
-
make_list_of_images,
|
23 |
-
to_numpy_array,
|
24 |
-
valid_images,
|
25 |
-
validate_preprocess_arguments,
|
26 |
-
)
|
27 |
-
from transformers.utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
|
28 |
-
|
29 |
-
|
30 |
-
logger = logging.get_logger(__name__)
|
31 |
-
|
32 |
-
|
33 |
-
if is_vision_available():
|
34 |
-
import PIL
|
35 |
-
|
36 |
-
|
37 |
-
class SiglipImageProcessor(BaseImageProcessor):
|
38 |
-
r"""
|
39 |
-
Constructs a SigLIP image processor.
|
40 |
-
|
41 |
-
Args:
|
42 |
-
do_resize (`bool`, *optional*, defaults to `True`):
|
43 |
-
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
44 |
-
`do_resize` in the `preprocess` method.
|
45 |
-
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
|
46 |
-
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
|
47 |
-
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
48 |
-
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
49 |
-
do_rescale (`bool`, *optional*, defaults to `True`):
|
50 |
-
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
51 |
-
the `preprocess` method.
|
52 |
-
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
53 |
-
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
54 |
-
method.
|
55 |
-
do_normalize (`bool`, *optional*, defaults to `True`):
|
56 |
-
Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
|
57 |
-
`do_normalize` in the `preprocess` method.
|
58 |
-
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
59 |
-
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
60 |
-
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
61 |
-
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
62 |
-
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
63 |
-
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
64 |
-
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
65 |
-
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
66 |
-
Whether to convert the image to RGB.
|
67 |
-
"""
|
68 |
-
|
69 |
-
model_input_names = ["pixel_values"]
|
70 |
-
|
71 |
-
def __init__(
|
72 |
-
self,
|
73 |
-
do_resize: bool = True,
|
74 |
-
size: Dict[str, int] = None,
|
75 |
-
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
76 |
-
do_rescale: bool = True,
|
77 |
-
rescale_factor: Union[int, float] = 1 / 255,
|
78 |
-
do_normalize: bool = True,
|
79 |
-
image_mean: Optional[Union[float, List[float]]] = None,
|
80 |
-
image_std: Optional[Union[float, List[float]]] = None,
|
81 |
-
do_convert_rgb: bool = None,
|
82 |
-
**kwargs,
|
83 |
-
) -> None:
|
84 |
-
super().__init__(**kwargs)
|
85 |
-
size = size if size is not None else {"height": 224, "width": 224}
|
86 |
-
image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
87 |
-
image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
88 |
-
|
89 |
-
self.do_resize = do_resize
|
90 |
-
self.size = size
|
91 |
-
self.resample = resample
|
92 |
-
self.do_rescale = do_rescale
|
93 |
-
self.rescale_factor = rescale_factor
|
94 |
-
self.do_normalize = do_normalize
|
95 |
-
self.image_mean = image_mean
|
96 |
-
self.image_std = image_std
|
97 |
-
self.do_convert_rgb = do_convert_rgb
|
98 |
-
|
99 |
-
@filter_out_non_signature_kwargs()
|
100 |
-
def preprocess(
|
101 |
-
self,
|
102 |
-
images: ImageInput,
|
103 |
-
do_resize: bool = None,
|
104 |
-
size: Dict[str, int] = None,
|
105 |
-
resample: PILImageResampling = None,
|
106 |
-
do_rescale: bool = None,
|
107 |
-
rescale_factor: float = None,
|
108 |
-
do_normalize: bool = None,
|
109 |
-
image_mean: Optional[Union[float, List[float]]] = None,
|
110 |
-
image_std: Optional[Union[float, List[float]]] = None,
|
111 |
-
return_tensors: Optional[Union[str, TensorType]] = None,
|
112 |
-
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
113 |
-
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
114 |
-
do_convert_rgb: bool = None,
|
115 |
-
) -> PIL.Image.Image:
|
116 |
-
"""
|
117 |
-
Preprocess an image or batch of images.
|
118 |
-
|
119 |
-
Args:
|
120 |
-
images (`ImageInput`):
|
121 |
-
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
122 |
-
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
123 |
-
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
124 |
-
Whether to resize the image.
|
125 |
-
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
126 |
-
Size of the image after resizing.
|
127 |
-
resample (`int`, *optional*, defaults to `self.resample`):
|
128 |
-
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
129 |
-
has an effect if `do_resize` is set to `True`.
|
130 |
-
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
131 |
-
Whether to rescale the image.
|
132 |
-
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
133 |
-
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
134 |
-
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
135 |
-
Whether to normalize the image.
|
136 |
-
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
137 |
-
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
138 |
-
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
139 |
-
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
140 |
-
`True`.
|
141 |
-
return_tensors (`str` or `TensorType`, *optional*):
|
142 |
-
The type of tensors to return. Can be one of:
|
143 |
-
- Unset: Return a list of `np.ndarray`.
|
144 |
-
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
145 |
-
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
146 |
-
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
147 |
-
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
148 |
-
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
149 |
-
The channel dimension format for the output image. Can be one of:
|
150 |
-
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
151 |
-
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
152 |
-
- Unset: Use the channel dimension format of the input image.
|
153 |
-
input_data_format (`ChannelDimension` or `str`, *optional*):
|
154 |
-
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
155 |
-
from the input image. Can be one of:
|
156 |
-
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
157 |
-
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
158 |
-
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
159 |
-
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
160 |
-
Whether to convert the image to RGB.
|
161 |
-
"""
|
162 |
-
do_resize = do_resize if do_resize is not None else self.do_resize
|
163 |
-
size = size if size is not None else self.size
|
164 |
-
size = get_size_dict(size, param_name="size", default_to_square=False)
|
165 |
-
resample = resample if resample is not None else self.resample
|
166 |
-
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
167 |
-
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
168 |
-
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
169 |
-
image_mean = image_mean if image_mean is not None else self.image_mean
|
170 |
-
image_std = image_std if image_std is not None else self.image_std
|
171 |
-
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
172 |
-
|
173 |
-
images = make_list_of_images(images)
|
174 |
-
|
175 |
-
if not valid_images(images):
|
176 |
-
raise ValueError(
|
177 |
-
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
178 |
-
"torch.Tensor, tf.Tensor or jax.ndarray."
|
179 |
-
)
|
180 |
-
validate_preprocess_arguments(
|
181 |
-
do_rescale=do_rescale,
|
182 |
-
rescale_factor=rescale_factor,
|
183 |
-
do_normalize=do_normalize,
|
184 |
-
image_mean=image_mean,
|
185 |
-
image_std=image_std,
|
186 |
-
do_resize=do_resize,
|
187 |
-
size=size,
|
188 |
-
resample=resample,
|
189 |
-
)
|
190 |
-
# All transformations expect numpy arrays.
|
191 |
-
images = [to_numpy_array(image) for image in images]
|
192 |
-
|
193 |
-
if do_convert_rgb:
|
194 |
-
images = [convert_to_rgb(image) for image in images]
|
195 |
-
|
196 |
-
if is_scaled_image(images[0]) and do_rescale:
|
197 |
-
logger.warning_once(
|
198 |
-
"It looks like you are trying to rescale already rescaled images. If the input"
|
199 |
-
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
200 |
-
)
|
201 |
-
|
202 |
-
if input_data_format is None:
|
203 |
-
# We assume that all images have the same channel dimension format.
|
204 |
-
input_data_format = infer_channel_dimension_format(images[0])
|
205 |
-
|
206 |
-
if do_resize:
|
207 |
-
height, width = size["height"], size["width"]
|
208 |
-
images = [
|
209 |
-
resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format)
|
210 |
-
for image in images
|
211 |
-
]
|
212 |
-
|
213 |
-
if do_rescale:
|
214 |
-
images = [
|
215 |
-
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
216 |
-
for image in images
|
217 |
-
]
|
218 |
-
|
219 |
-
if do_normalize:
|
220 |
-
images = [
|
221 |
-
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
222 |
-
for image in images
|
223 |
-
]
|
224 |
-
|
225 |
-
images = [
|
226 |
-
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
227 |
-
]
|
228 |
-
|
229 |
-
data = {"pixel_values": images}
|
230 |
-
return BatchFeature(data=data, tensor_type=return_tensors)
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Image processor class for SigLIP."""
|
5 |
+
|
6 |
+
from typing import Dict, List, Optional, Union
|
7 |
+
|
8 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
9 |
+
from transformers.image_transforms import (
|
10 |
+
convert_to_rgb,
|
11 |
+
resize,
|
12 |
+
to_channel_dimension_format,
|
13 |
+
)
|
14 |
+
from transformers.image_utils import (
|
15 |
+
IMAGENET_STANDARD_MEAN,
|
16 |
+
IMAGENET_STANDARD_STD,
|
17 |
+
ChannelDimension,
|
18 |
+
ImageInput,
|
19 |
+
PILImageResampling,
|
20 |
+
infer_channel_dimension_format,
|
21 |
+
is_scaled_image,
|
22 |
+
make_list_of_images,
|
23 |
+
to_numpy_array,
|
24 |
+
valid_images,
|
25 |
+
validate_preprocess_arguments,
|
26 |
+
)
|
27 |
+
from transformers.utils import TensorType, filter_out_non_signature_kwargs, is_vision_available, logging
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
if is_vision_available():
|
34 |
+
import PIL
|
35 |
+
|
36 |
+
|
37 |
+
class SiglipImageProcessor(BaseImageProcessor):
|
38 |
+
r"""
|
39 |
+
Constructs a SigLIP image processor.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
43 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
44 |
+
`do_resize` in the `preprocess` method.
|
45 |
+
size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`):
|
46 |
+
Size of the image after resizing. Can be overridden by `size` in the `preprocess` method.
|
47 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
48 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
49 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
50 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
51 |
+
the `preprocess` method.
|
52 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
53 |
+
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
54 |
+
method.
|
55 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
56 |
+
Whether to normalize the image by the specified mean and standard deviation. Can be overridden by
|
57 |
+
`do_normalize` in the `preprocess` method.
|
58 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
59 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
60 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
61 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`):
|
62 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
63 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
64 |
+
Can be overridden by the `image_std` parameter in the `preprocess` method.
|
65 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether to convert the image to RGB.
|
67 |
+
"""
|
68 |
+
|
69 |
+
model_input_names = ["pixel_values"]
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
do_resize: bool = True,
|
74 |
+
size: Dict[str, int] = None,
|
75 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
76 |
+
do_rescale: bool = True,
|
77 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
78 |
+
do_normalize: bool = True,
|
79 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
80 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
81 |
+
do_convert_rgb: bool = None,
|
82 |
+
**kwargs,
|
83 |
+
) -> None:
|
84 |
+
super().__init__(**kwargs)
|
85 |
+
size = size if size is not None else {"height": 224, "width": 224}
|
86 |
+
image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
87 |
+
image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
88 |
+
|
89 |
+
self.do_resize = do_resize
|
90 |
+
self.size = size
|
91 |
+
self.resample = resample
|
92 |
+
self.do_rescale = do_rescale
|
93 |
+
self.rescale_factor = rescale_factor
|
94 |
+
self.do_normalize = do_normalize
|
95 |
+
self.image_mean = image_mean
|
96 |
+
self.image_std = image_std
|
97 |
+
self.do_convert_rgb = do_convert_rgb
|
98 |
+
|
99 |
+
@filter_out_non_signature_kwargs()
|
100 |
+
def preprocess(
|
101 |
+
self,
|
102 |
+
images: ImageInput,
|
103 |
+
do_resize: bool = None,
|
104 |
+
size: Dict[str, int] = None,
|
105 |
+
resample: PILImageResampling = None,
|
106 |
+
do_rescale: bool = None,
|
107 |
+
rescale_factor: float = None,
|
108 |
+
do_normalize: bool = None,
|
109 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
110 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
111 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
112 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
113 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
114 |
+
do_convert_rgb: bool = None,
|
115 |
+
) -> PIL.Image.Image:
|
116 |
+
"""
|
117 |
+
Preprocess an image or batch of images.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
images (`ImageInput`):
|
121 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
122 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
123 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
124 |
+
Whether to resize the image.
|
125 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
126 |
+
Size of the image after resizing.
|
127 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
128 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
129 |
+
has an effect if `do_resize` is set to `True`.
|
130 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
131 |
+
Whether to rescale the image.
|
132 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
133 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
134 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
135 |
+
Whether to normalize the image.
|
136 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
137 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
138 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
139 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
140 |
+
`True`.
|
141 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
142 |
+
The type of tensors to return. Can be one of:
|
143 |
+
- Unset: Return a list of `np.ndarray`.
|
144 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
145 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
146 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
147 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
148 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
149 |
+
The channel dimension format for the output image. Can be one of:
|
150 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
151 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
152 |
+
- Unset: Use the channel dimension format of the input image.
|
153 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
154 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
155 |
+
from the input image. Can be one of:
|
156 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
157 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
158 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
159 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
160 |
+
Whether to convert the image to RGB.
|
161 |
+
"""
|
162 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
163 |
+
size = size if size is not None else self.size
|
164 |
+
size = get_size_dict(size, param_name="size", default_to_square=False)
|
165 |
+
resample = resample if resample is not None else self.resample
|
166 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
167 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
168 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
169 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
170 |
+
image_std = image_std if image_std is not None else self.image_std
|
171 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
172 |
+
|
173 |
+
images = make_list_of_images(images)
|
174 |
+
|
175 |
+
if not valid_images(images):
|
176 |
+
raise ValueError(
|
177 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
178 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
179 |
+
)
|
180 |
+
validate_preprocess_arguments(
|
181 |
+
do_rescale=do_rescale,
|
182 |
+
rescale_factor=rescale_factor,
|
183 |
+
do_normalize=do_normalize,
|
184 |
+
image_mean=image_mean,
|
185 |
+
image_std=image_std,
|
186 |
+
do_resize=do_resize,
|
187 |
+
size=size,
|
188 |
+
resample=resample,
|
189 |
+
)
|
190 |
+
# All transformations expect numpy arrays.
|
191 |
+
images = [to_numpy_array(image) for image in images]
|
192 |
+
|
193 |
+
if do_convert_rgb:
|
194 |
+
images = [convert_to_rgb(image) for image in images]
|
195 |
+
|
196 |
+
if is_scaled_image(images[0]) and do_rescale:
|
197 |
+
logger.warning_once(
|
198 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
199 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
200 |
+
)
|
201 |
+
|
202 |
+
if input_data_format is None:
|
203 |
+
# We assume that all images have the same channel dimension format.
|
204 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
205 |
+
|
206 |
+
if do_resize:
|
207 |
+
height, width = size["height"], size["width"]
|
208 |
+
images = [
|
209 |
+
resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format)
|
210 |
+
for image in images
|
211 |
+
]
|
212 |
+
|
213 |
+
if do_rescale:
|
214 |
+
images = [
|
215 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
216 |
+
for image in images
|
217 |
+
]
|
218 |
+
|
219 |
+
if do_normalize:
|
220 |
+
images = [
|
221 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
222 |
+
for image in images
|
223 |
+
]
|
224 |
+
|
225 |
+
images = [
|
226 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
227 |
+
]
|
228 |
+
|
229 |
+
data = {"pixel_values": images}
|
230 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
modeling/siglip/modeling_siglip.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
modeling/siglip/processing_siglip.py
CHANGED
@@ -1,131 +1,131 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""
|
5 |
-
Image/Text processor class for SigLIP.
|
6 |
-
"""
|
7 |
-
|
8 |
-
from typing import List, Optional, Union
|
9 |
-
|
10 |
-
from transformers.feature_extraction_utils import BatchFeature
|
11 |
-
from transformers.image_utils import ImageInput
|
12 |
-
from transformers.processing_utils import ProcessorMixin
|
13 |
-
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
14 |
-
from transformers.utils import TensorType
|
15 |
-
|
16 |
-
|
17 |
-
class SiglipProcessor(ProcessorMixin):
|
18 |
-
r"""
|
19 |
-
Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.
|
20 |
-
|
21 |
-
[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
|
22 |
-
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.
|
23 |
-
|
24 |
-
Args:
|
25 |
-
image_processor ([`SiglipImageProcessor`]):
|
26 |
-
The image processor is a required input.
|
27 |
-
tokenizer ([`SiglipTokenizer`]):
|
28 |
-
The tokenizer is a required input.
|
29 |
-
"""
|
30 |
-
|
31 |
-
attributes = ["image_processor", "tokenizer"]
|
32 |
-
image_processor_class = "SiglipImageProcessor"
|
33 |
-
tokenizer_class = "SiglipTokenizer"
|
34 |
-
|
35 |
-
def __init__(self, image_processor, tokenizer):
|
36 |
-
super().__init__(image_processor, tokenizer)
|
37 |
-
|
38 |
-
def __call__(
|
39 |
-
self,
|
40 |
-
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
41 |
-
images: ImageInput = None,
|
42 |
-
padding: Union[bool, str, PaddingStrategy] = False,
|
43 |
-
truncation: Union[bool, str, TruncationStrategy] = None,
|
44 |
-
max_length: int = None,
|
45 |
-
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
46 |
-
) -> BatchFeature:
|
47 |
-
"""
|
48 |
-
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
49 |
-
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
|
50 |
-
the text. To prepare the image(s), this method forwards the `images` argument to
|
51 |
-
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
52 |
-
of the above two methods for more information.
|
53 |
-
|
54 |
-
Args:
|
55 |
-
text (`str`, `List[str]`, `List[List[str]]`):
|
56 |
-
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
57 |
-
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
58 |
-
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
59 |
-
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
60 |
-
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
61 |
-
tensor. Both channels-first and channels-last formats are supported.
|
62 |
-
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
63 |
-
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
64 |
-
index) among:
|
65 |
-
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
66 |
-
sequence if provided).
|
67 |
-
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
68 |
-
acceptable input length for the model if that argument is not provided.
|
69 |
-
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
70 |
-
lengths).
|
71 |
-
max_length (`int`, *optional*):
|
72 |
-
Maximum length of the returned list and optionally padding length (see above).
|
73 |
-
truncation (`bool`, *optional*):
|
74 |
-
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
75 |
-
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
76 |
-
If set, will return tensors of a particular framework. Acceptable values are:
|
77 |
-
|
78 |
-
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
79 |
-
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
80 |
-
- `'np'`: Return NumPy `np.ndarray` objects.
|
81 |
-
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
82 |
-
|
83 |
-
Returns:
|
84 |
-
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
85 |
-
|
86 |
-
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
87 |
-
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
88 |
-
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
89 |
-
`None`).
|
90 |
-
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
91 |
-
"""
|
92 |
-
|
93 |
-
if text is None and images is None:
|
94 |
-
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
95 |
-
|
96 |
-
if text is not None:
|
97 |
-
encoding = self.tokenizer(
|
98 |
-
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
99 |
-
)
|
100 |
-
|
101 |
-
if images is not None:
|
102 |
-
image_features = self.image_processor(images, return_tensors=return_tensors)
|
103 |
-
|
104 |
-
if text is not None and images is not None:
|
105 |
-
encoding["pixel_values"] = image_features.pixel_values
|
106 |
-
return encoding
|
107 |
-
elif text is not None:
|
108 |
-
return encoding
|
109 |
-
else:
|
110 |
-
return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)
|
111 |
-
|
112 |
-
def decode(self, *args, **kwargs):
|
113 |
-
"""
|
114 |
-
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
115 |
-
the docstring of this method for more information.
|
116 |
-
"""
|
117 |
-
return self.tokenizer.decode(*args, **kwargs)
|
118 |
-
|
119 |
-
def batch_decode(self, *args, **kwargs):
|
120 |
-
"""
|
121 |
-
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
122 |
-
refer to the docstring of this method for more information.
|
123 |
-
"""
|
124 |
-
return self.tokenizer.batch_decode(*args, **kwargs)
|
125 |
-
|
126 |
-
@property
|
127 |
-
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip
|
128 |
-
def model_input_names(self):
|
129 |
-
tokenizer_input_names = self.tokenizer.model_input_names
|
130 |
-
image_processor_input_names = self.image_processor.model_input_names
|
131 |
-
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""
|
5 |
+
Image/Text processor class for SigLIP.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import List, Optional, Union
|
9 |
+
|
10 |
+
from transformers.feature_extraction_utils import BatchFeature
|
11 |
+
from transformers.image_utils import ImageInput
|
12 |
+
from transformers.processing_utils import ProcessorMixin
|
13 |
+
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
14 |
+
from transformers.utils import TensorType
|
15 |
+
|
16 |
+
|
17 |
+
class SiglipProcessor(ProcessorMixin):
|
18 |
+
r"""
|
19 |
+
Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor.
|
20 |
+
|
21 |
+
[`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the
|
22 |
+
[`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
image_processor ([`SiglipImageProcessor`]):
|
26 |
+
The image processor is a required input.
|
27 |
+
tokenizer ([`SiglipTokenizer`]):
|
28 |
+
The tokenizer is a required input.
|
29 |
+
"""
|
30 |
+
|
31 |
+
attributes = ["image_processor", "tokenizer"]
|
32 |
+
image_processor_class = "SiglipImageProcessor"
|
33 |
+
tokenizer_class = "SiglipTokenizer"
|
34 |
+
|
35 |
+
def __init__(self, image_processor, tokenizer):
|
36 |
+
super().__init__(image_processor, tokenizer)
|
37 |
+
|
38 |
+
def __call__(
|
39 |
+
self,
|
40 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
41 |
+
images: ImageInput = None,
|
42 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
43 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
44 |
+
max_length: int = None,
|
45 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
46 |
+
) -> BatchFeature:
|
47 |
+
"""
|
48 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
49 |
+
and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode
|
50 |
+
the text. To prepare the image(s), this method forwards the `images` argument to
|
51 |
+
SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
52 |
+
of the above two methods for more information.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
56 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
57 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
58 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
59 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
60 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
61 |
+
tensor. Both channels-first and channels-last formats are supported.
|
62 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
63 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
64 |
+
index) among:
|
65 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
66 |
+
sequence if provided).
|
67 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
68 |
+
acceptable input length for the model if that argument is not provided.
|
69 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
70 |
+
lengths).
|
71 |
+
max_length (`int`, *optional*):
|
72 |
+
Maximum length of the returned list and optionally padding length (see above).
|
73 |
+
truncation (`bool`, *optional*):
|
74 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
75 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
76 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
77 |
+
|
78 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
79 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
80 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
81 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
85 |
+
|
86 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
87 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
88 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
89 |
+
`None`).
|
90 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
91 |
+
"""
|
92 |
+
|
93 |
+
if text is None and images is None:
|
94 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
95 |
+
|
96 |
+
if text is not None:
|
97 |
+
encoding = self.tokenizer(
|
98 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
99 |
+
)
|
100 |
+
|
101 |
+
if images is not None:
|
102 |
+
image_features = self.image_processor(images, return_tensors=return_tensors)
|
103 |
+
|
104 |
+
if text is not None and images is not None:
|
105 |
+
encoding["pixel_values"] = image_features.pixel_values
|
106 |
+
return encoding
|
107 |
+
elif text is not None:
|
108 |
+
return encoding
|
109 |
+
else:
|
110 |
+
return BatchFeature(data=dict(**image_features), tensor_type=return_tensors)
|
111 |
+
|
112 |
+
def decode(self, *args, **kwargs):
|
113 |
+
"""
|
114 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
115 |
+
the docstring of this method for more information.
|
116 |
+
"""
|
117 |
+
return self.tokenizer.decode(*args, **kwargs)
|
118 |
+
|
119 |
+
def batch_decode(self, *args, **kwargs):
|
120 |
+
"""
|
121 |
+
This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
122 |
+
refer to the docstring of this method for more information.
|
123 |
+
"""
|
124 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
125 |
+
|
126 |
+
@property
|
127 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Siglip, T5->Siglip
|
128 |
+
def model_input_names(self):
|
129 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
130 |
+
image_processor_input_names = self.image_processor.model_input_names
|
131 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
modeling/siglip/tokenization_siglip.py
CHANGED
@@ -1,364 +1,364 @@
|
|
1 |
-
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
|
4 |
-
"""Tokenization class for SigLIP model."""
|
5 |
-
|
6 |
-
import os
|
7 |
-
import re
|
8 |
-
import string
|
9 |
-
import warnings
|
10 |
-
from shutil import copyfile
|
11 |
-
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
12 |
-
|
13 |
-
import sentencepiece as spm
|
14 |
-
|
15 |
-
from transformers.convert_slow_tokenizer import import_protobuf
|
16 |
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
17 |
-
from transformers.tokenization_utils_base import AddedToken
|
18 |
-
|
19 |
-
|
20 |
-
if TYPE_CHECKING:
|
21 |
-
from transformers.tokenization_utils_base import TextInput
|
22 |
-
from transformers.utils import logging, requires_backends
|
23 |
-
|
24 |
-
|
25 |
-
logger = logging.get_logger(__name__)
|
26 |
-
|
27 |
-
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
28 |
-
|
29 |
-
|
30 |
-
SPIECE_UNDERLINE = "▁"
|
31 |
-
|
32 |
-
|
33 |
-
class SiglipTokenizer(PreTrainedTokenizer):
|
34 |
-
"""
|
35 |
-
Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
36 |
-
|
37 |
-
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
38 |
-
this superclass for more information regarding those methods.
|
39 |
-
|
40 |
-
Args:
|
41 |
-
vocab_file (`str`):
|
42 |
-
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
43 |
-
contains the vocabulary necessary to instantiate a tokenizer.
|
44 |
-
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
45 |
-
The end of sequence token.
|
46 |
-
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
47 |
-
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
48 |
-
token instead.
|
49 |
-
pad_token (`str`, *optional*, defaults to `"</s>"`):
|
50 |
-
The token used for padding, for example when batching sequences of different lengths.
|
51 |
-
additional_special_tokens (`List[str]`, *optional*):
|
52 |
-
Additional special tokens used by the tokenizer.
|
53 |
-
sp_model_kwargs (`dict`, *optional*):
|
54 |
-
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
55 |
-
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
56 |
-
to set:
|
57 |
-
|
58 |
-
- `enable_sampling`: Enable subword regularization.
|
59 |
-
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
60 |
-
|
61 |
-
- `nbest_size = {0,1}`: No sampling is performed.
|
62 |
-
- `nbest_size > 1`: samples from the nbest_size results.
|
63 |
-
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
64 |
-
using forward-filtering-and-backward-sampling algorithm.
|
65 |
-
|
66 |
-
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
67 |
-
BPE-dropout.
|
68 |
-
model_max_length (`int`, *optional*, defaults to 64):
|
69 |
-
The maximum length (in number of tokens) for model inputs.
|
70 |
-
do_lower_case (`bool`, *optional*, defaults to `True`):
|
71 |
-
Whether or not to lowercase the input when tokenizing.
|
72 |
-
"""
|
73 |
-
|
74 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
75 |
-
model_input_names = ["input_ids", "attention_mask"]
|
76 |
-
|
77 |
-
def __init__(
|
78 |
-
self,
|
79 |
-
vocab_file,
|
80 |
-
eos_token="</s>",
|
81 |
-
unk_token="<unk>",
|
82 |
-
pad_token="</s>",
|
83 |
-
additional_special_tokens=None,
|
84 |
-
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
85 |
-
model_max_length=64,
|
86 |
-
do_lower_case=True,
|
87 |
-
**kwargs,
|
88 |
-
) -> None:
|
89 |
-
requires_backends(self, "protobuf")
|
90 |
-
|
91 |
-
pad_token = (
|
92 |
-
AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
93 |
-
if isinstance(pad_token, str)
|
94 |
-
else pad_token
|
95 |
-
)
|
96 |
-
unk_token = (
|
97 |
-
AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
98 |
-
if isinstance(unk_token, str)
|
99 |
-
else unk_token
|
100 |
-
)
|
101 |
-
eos_token = (
|
102 |
-
AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
103 |
-
if isinstance(eos_token, str)
|
104 |
-
else eos_token
|
105 |
-
)
|
106 |
-
|
107 |
-
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
108 |
-
|
109 |
-
self.do_lower_case = do_lower_case
|
110 |
-
self.vocab_file = vocab_file
|
111 |
-
|
112 |
-
self.sp_model = self.get_spm_processor()
|
113 |
-
self.vocab_file = vocab_file
|
114 |
-
|
115 |
-
super().__init__(
|
116 |
-
eos_token=eos_token,
|
117 |
-
unk_token=unk_token,
|
118 |
-
pad_token=pad_token,
|
119 |
-
additional_special_tokens=additional_special_tokens,
|
120 |
-
sp_model_kwargs=self.sp_model_kwargs,
|
121 |
-
model_max_length=model_max_length,
|
122 |
-
do_lower_case=do_lower_case,
|
123 |
-
**kwargs,
|
124 |
-
)
|
125 |
-
|
126 |
-
def get_spm_processor(self):
|
127 |
-
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
128 |
-
with open(self.vocab_file, "rb") as f:
|
129 |
-
sp_model = f.read()
|
130 |
-
model_pb2 = import_protobuf()
|
131 |
-
model = model_pb2.ModelProto.FromString(sp_model)
|
132 |
-
normalizer_spec = model_pb2.NormalizerSpec()
|
133 |
-
normalizer_spec.add_dummy_prefix = False
|
134 |
-
model.normalizer_spec.MergeFrom(normalizer_spec)
|
135 |
-
sp_model = model.SerializeToString()
|
136 |
-
tokenizer.LoadFromSerializedProto(sp_model)
|
137 |
-
return tokenizer
|
138 |
-
|
139 |
-
@property
|
140 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size
|
141 |
-
def vocab_size(self):
|
142 |
-
return self.sp_model.get_piece_size()
|
143 |
-
|
144 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab
|
145 |
-
def get_vocab(self):
|
146 |
-
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
147 |
-
vocab.update(self.added_tokens_encoder)
|
148 |
-
return vocab
|
149 |
-
|
150 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask
|
151 |
-
def get_special_tokens_mask(
|
152 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
153 |
-
) -> List[int]:
|
154 |
-
"""
|
155 |
-
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
156 |
-
special tokens using the tokenizer `prepare_for_model` method.
|
157 |
-
|
158 |
-
Args:
|
159 |
-
token_ids_0 (`List[int]`):
|
160 |
-
List of IDs.
|
161 |
-
token_ids_1 (`List[int]`, *optional*):
|
162 |
-
Optional second list of IDs for sequence pairs.
|
163 |
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
164 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
165 |
-
|
166 |
-
Returns:
|
167 |
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
168 |
-
"""
|
169 |
-
if already_has_special_tokens:
|
170 |
-
return super().get_special_tokens_mask(
|
171 |
-
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
172 |
-
)
|
173 |
-
|
174 |
-
# normal case: some special tokens
|
175 |
-
if token_ids_1 is None:
|
176 |
-
return ([0] * len(token_ids_0)) + [1]
|
177 |
-
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
178 |
-
|
179 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present
|
180 |
-
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
|
181 |
-
"""Do not add eos again if user already added it."""
|
182 |
-
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
|
183 |
-
warnings.warn(
|
184 |
-
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
|
185 |
-
" eos tokens being added."
|
186 |
-
)
|
187 |
-
return token_ids
|
188 |
-
else:
|
189 |
-
return token_ids + [self.eos_token_id]
|
190 |
-
|
191 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences
|
192 |
-
def create_token_type_ids_from_sequences(
|
193 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
194 |
-
) -> List[int]:
|
195 |
-
"""
|
196 |
-
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
197 |
-
use of token type ids, therefore a list of zeros is returned.
|
198 |
-
|
199 |
-
Args:
|
200 |
-
token_ids_0 (`List[int]`):
|
201 |
-
List of IDs.
|
202 |
-
token_ids_1 (`List[int]`, *optional*):
|
203 |
-
Optional second list of IDs for sequence pairs.
|
204 |
-
|
205 |
-
Returns:
|
206 |
-
`List[int]`: List of zeros.
|
207 |
-
"""
|
208 |
-
eos = [self.eos_token_id]
|
209 |
-
|
210 |
-
if token_ids_1 is None:
|
211 |
-
return len(token_ids_0 + eos) * [0]
|
212 |
-
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
213 |
-
|
214 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens
|
215 |
-
def build_inputs_with_special_tokens(
|
216 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
217 |
-
) -> List[int]:
|
218 |
-
"""
|
219 |
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
220 |
-
adding special tokens. A sequence has the following format:
|
221 |
-
|
222 |
-
- single sequence: `X </s>`
|
223 |
-
- pair of sequences: `A </s> B </s>`
|
224 |
-
|
225 |
-
Args:
|
226 |
-
token_ids_0 (`List[int]`):
|
227 |
-
List of IDs to which the special tokens will be added.
|
228 |
-
token_ids_1 (`List[int]`, *optional*):
|
229 |
-
Optional second list of IDs for sequence pairs.
|
230 |
-
|
231 |
-
Returns:
|
232 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
233 |
-
"""
|
234 |
-
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
235 |
-
if token_ids_1 is None:
|
236 |
-
return token_ids_0
|
237 |
-
else:
|
238 |
-
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
239 |
-
return token_ids_0 + token_ids_1
|
240 |
-
|
241 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__
|
242 |
-
def __getstate__(self):
|
243 |
-
state = self.__dict__.copy()
|
244 |
-
state["sp_model"] = None
|
245 |
-
return state
|
246 |
-
|
247 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__
|
248 |
-
def __setstate__(self, d):
|
249 |
-
self.__dict__ = d
|
250 |
-
|
251 |
-
# for backward compatibility
|
252 |
-
if not hasattr(self, "sp_model_kwargs"):
|
253 |
-
self.sp_model_kwargs = {}
|
254 |
-
|
255 |
-
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
256 |
-
self.sp_model.Load(self.vocab_file)
|
257 |
-
|
258 |
-
def remove_punctuation(self, text: str) -> str:
|
259 |
-
return text.translate(str.maketrans("", "", string.punctuation))
|
260 |
-
|
261 |
-
# source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
|
262 |
-
def canonicalize_text(self, text, *, keep_punctuation_exact_string=None):
|
263 |
-
"""Returns canonicalized `text` (puncuation removed).
|
264 |
-
|
265 |
-
Args:
|
266 |
-
text (`str`):
|
267 |
-
String to be canonicalized.
|
268 |
-
keep_punctuation_exact_string (`str`, *optional*):
|
269 |
-
If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}'
|
270 |
-
(but will still remove '{' and '}' that appear separately).
|
271 |
-
"""
|
272 |
-
if keep_punctuation_exact_string:
|
273 |
-
text = keep_punctuation_exact_string.join(
|
274 |
-
self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string)
|
275 |
-
)
|
276 |
-
else:
|
277 |
-
text = self.remove_punctuation(text)
|
278 |
-
text = re.sub(r"\s+", " ", text)
|
279 |
-
text = text.strip()
|
280 |
-
|
281 |
-
return text
|
282 |
-
|
283 |
-
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
|
284 |
-
"""
|
285 |
-
Converts a string to a list of tokens.
|
286 |
-
"""
|
287 |
-
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
|
288 |
-
|
289 |
-
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
290 |
-
tokens = tokens[1:]
|
291 |
-
return tokens
|
292 |
-
|
293 |
-
@property
|
294 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length
|
295 |
-
def unk_token_length(self):
|
296 |
-
return len(self.sp_model.encode(str(self.unk_token)))
|
297 |
-
|
298 |
-
def _tokenize(self, text, **kwargs):
|
299 |
-
"""
|
300 |
-
Returns a tokenized string.
|
301 |
-
|
302 |
-
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
303 |
-
SPIECE_UNDERLINE.
|
304 |
-
|
305 |
-
For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`.
|
306 |
-
|
307 |
-
Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
308 |
-
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
309 |
-
"""
|
310 |
-
text = self.canonicalize_text(text, keep_punctuation_exact_string=None)
|
311 |
-
tokens = self.sp_model.encode(text, out_type=str)
|
312 |
-
|
313 |
-
# 1. Encode string + prefix ex: "<unk> Hey"
|
314 |
-
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
315 |
-
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
316 |
-
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
317 |
-
|
318 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id
|
319 |
-
def _convert_token_to_id(self, token):
|
320 |
-
"""Converts a token (str) in an id using the vocab."""
|
321 |
-
return self.sp_model.piece_to_id(token)
|
322 |
-
|
323 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token
|
324 |
-
def _convert_id_to_token(self, index):
|
325 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
326 |
-
token = self.sp_model.IdToPiece(index)
|
327 |
-
return token
|
328 |
-
|
329 |
-
def convert_tokens_to_string(self, tokens):
|
330 |
-
"""Converts a sequence of tokens (string) in a single string."""
|
331 |
-
current_sub_tokens = []
|
332 |
-
out_string = ""
|
333 |
-
prev_is_special = False
|
334 |
-
for token in tokens:
|
335 |
-
# make sure that special tokens are not decoded using sentencepiece model
|
336 |
-
if token in self.all_special_tokens:
|
337 |
-
if not prev_is_special:
|
338 |
-
out_string += " "
|
339 |
-
out_string += self.sp_model.decode(current_sub_tokens) + token
|
340 |
-
prev_is_special = True
|
341 |
-
current_sub_tokens = []
|
342 |
-
else:
|
343 |
-
current_sub_tokens.append(token)
|
344 |
-
prev_is_special = False
|
345 |
-
out_string += self.sp_model.decode(current_sub_tokens)
|
346 |
-
return out_string.strip()
|
347 |
-
|
348 |
-
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary
|
349 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
350 |
-
if not os.path.isdir(save_directory):
|
351 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
352 |
-
return
|
353 |
-
out_vocab_file = os.path.join(
|
354 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
355 |
-
)
|
356 |
-
|
357 |
-
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
358 |
-
copyfile(self.vocab_file, out_vocab_file)
|
359 |
-
elif not os.path.isfile(self.vocab_file):
|
360 |
-
with open(out_vocab_file, "wb") as fi:
|
361 |
-
content_spiece_model = self.sp_model.serialized_model_proto()
|
362 |
-
fi.write(content_spiece_model)
|
363 |
-
|
364 |
-
return (out_vocab_file,)
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
"""Tokenization class for SigLIP model."""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
import string
|
9 |
+
import warnings
|
10 |
+
from shutil import copyfile
|
11 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
12 |
+
|
13 |
+
import sentencepiece as spm
|
14 |
+
|
15 |
+
from transformers.convert_slow_tokenizer import import_protobuf
|
16 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
17 |
+
from transformers.tokenization_utils_base import AddedToken
|
18 |
+
|
19 |
+
|
20 |
+
if TYPE_CHECKING:
|
21 |
+
from transformers.tokenization_utils_base import TextInput
|
22 |
+
from transformers.utils import logging, requires_backends
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
|
28 |
+
|
29 |
+
|
30 |
+
SPIECE_UNDERLINE = "▁"
|
31 |
+
|
32 |
+
|
33 |
+
class SiglipTokenizer(PreTrainedTokenizer):
|
34 |
+
"""
|
35 |
+
Construct a Siglip tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
36 |
+
|
37 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
38 |
+
this superclass for more information regarding those methods.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_file (`str`):
|
42 |
+
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
|
43 |
+
contains the vocabulary necessary to instantiate a tokenizer.
|
44 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
45 |
+
The end of sequence token.
|
46 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
47 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
48 |
+
token instead.
|
49 |
+
pad_token (`str`, *optional*, defaults to `"</s>"`):
|
50 |
+
The token used for padding, for example when batching sequences of different lengths.
|
51 |
+
additional_special_tokens (`List[str]`, *optional*):
|
52 |
+
Additional special tokens used by the tokenizer.
|
53 |
+
sp_model_kwargs (`dict`, *optional*):
|
54 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
55 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
56 |
+
to set:
|
57 |
+
|
58 |
+
- `enable_sampling`: Enable subword regularization.
|
59 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
60 |
+
|
61 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
62 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
63 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
64 |
+
using forward-filtering-and-backward-sampling algorithm.
|
65 |
+
|
66 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
67 |
+
BPE-dropout.
|
68 |
+
model_max_length (`int`, *optional*, defaults to 64):
|
69 |
+
The maximum length (in number of tokens) for model inputs.
|
70 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not to lowercase the input when tokenizing.
|
72 |
+
"""
|
73 |
+
|
74 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
75 |
+
model_input_names = ["input_ids", "attention_mask"]
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
vocab_file,
|
80 |
+
eos_token="</s>",
|
81 |
+
unk_token="<unk>",
|
82 |
+
pad_token="</s>",
|
83 |
+
additional_special_tokens=None,
|
84 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
85 |
+
model_max_length=64,
|
86 |
+
do_lower_case=True,
|
87 |
+
**kwargs,
|
88 |
+
) -> None:
|
89 |
+
requires_backends(self, "protobuf")
|
90 |
+
|
91 |
+
pad_token = (
|
92 |
+
AddedToken(pad_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
93 |
+
if isinstance(pad_token, str)
|
94 |
+
else pad_token
|
95 |
+
)
|
96 |
+
unk_token = (
|
97 |
+
AddedToken(unk_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
98 |
+
if isinstance(unk_token, str)
|
99 |
+
else unk_token
|
100 |
+
)
|
101 |
+
eos_token = (
|
102 |
+
AddedToken(eos_token, rstrip=True, lstrip=True, normalized=False, special=True)
|
103 |
+
if isinstance(eos_token, str)
|
104 |
+
else eos_token
|
105 |
+
)
|
106 |
+
|
107 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
108 |
+
|
109 |
+
self.do_lower_case = do_lower_case
|
110 |
+
self.vocab_file = vocab_file
|
111 |
+
|
112 |
+
self.sp_model = self.get_spm_processor()
|
113 |
+
self.vocab_file = vocab_file
|
114 |
+
|
115 |
+
super().__init__(
|
116 |
+
eos_token=eos_token,
|
117 |
+
unk_token=unk_token,
|
118 |
+
pad_token=pad_token,
|
119 |
+
additional_special_tokens=additional_special_tokens,
|
120 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
121 |
+
model_max_length=model_max_length,
|
122 |
+
do_lower_case=do_lower_case,
|
123 |
+
**kwargs,
|
124 |
+
)
|
125 |
+
|
126 |
+
def get_spm_processor(self):
|
127 |
+
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
128 |
+
with open(self.vocab_file, "rb") as f:
|
129 |
+
sp_model = f.read()
|
130 |
+
model_pb2 = import_protobuf()
|
131 |
+
model = model_pb2.ModelProto.FromString(sp_model)
|
132 |
+
normalizer_spec = model_pb2.NormalizerSpec()
|
133 |
+
normalizer_spec.add_dummy_prefix = False
|
134 |
+
model.normalizer_spec.MergeFrom(normalizer_spec)
|
135 |
+
sp_model = model.SerializeToString()
|
136 |
+
tokenizer.LoadFromSerializedProto(sp_model)
|
137 |
+
return tokenizer
|
138 |
+
|
139 |
+
@property
|
140 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.vocab_size
|
141 |
+
def vocab_size(self):
|
142 |
+
return self.sp_model.get_piece_size()
|
143 |
+
|
144 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_vocab
|
145 |
+
def get_vocab(self):
|
146 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
147 |
+
vocab.update(self.added_tokens_encoder)
|
148 |
+
return vocab
|
149 |
+
|
150 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_special_tokens_mask
|
151 |
+
def get_special_tokens_mask(
|
152 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
153 |
+
) -> List[int]:
|
154 |
+
"""
|
155 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
156 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
token_ids_0 (`List[int]`):
|
160 |
+
List of IDs.
|
161 |
+
token_ids_1 (`List[int]`, *optional*):
|
162 |
+
Optional second list of IDs for sequence pairs.
|
163 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
164 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
168 |
+
"""
|
169 |
+
if already_has_special_tokens:
|
170 |
+
return super().get_special_tokens_mask(
|
171 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
172 |
+
)
|
173 |
+
|
174 |
+
# normal case: some special tokens
|
175 |
+
if token_ids_1 is None:
|
176 |
+
return ([0] * len(token_ids_0)) + [1]
|
177 |
+
return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
178 |
+
|
179 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._add_eos_if_not_present
|
180 |
+
def _add_eos_if_not_present(self, token_ids: List[int]) -> List[int]:
|
181 |
+
"""Do not add eos again if user already added it."""
|
182 |
+
if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id:
|
183 |
+
warnings.warn(
|
184 |
+
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
|
185 |
+
" eos tokens being added."
|
186 |
+
)
|
187 |
+
return token_ids
|
188 |
+
else:
|
189 |
+
return token_ids + [self.eos_token_id]
|
190 |
+
|
191 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.create_token_type_ids_from_sequences
|
192 |
+
def create_token_type_ids_from_sequences(
|
193 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
194 |
+
) -> List[int]:
|
195 |
+
"""
|
196 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
197 |
+
use of token type ids, therefore a list of zeros is returned.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
token_ids_0 (`List[int]`):
|
201 |
+
List of IDs.
|
202 |
+
token_ids_1 (`List[int]`, *optional*):
|
203 |
+
Optional second list of IDs for sequence pairs.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[int]`: List of zeros.
|
207 |
+
"""
|
208 |
+
eos = [self.eos_token_id]
|
209 |
+
|
210 |
+
if token_ids_1 is None:
|
211 |
+
return len(token_ids_0 + eos) * [0]
|
212 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|
213 |
+
|
214 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.build_inputs_with_special_tokens
|
215 |
+
def build_inputs_with_special_tokens(
|
216 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
217 |
+
) -> List[int]:
|
218 |
+
"""
|
219 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
220 |
+
adding special tokens. A sequence has the following format:
|
221 |
+
|
222 |
+
- single sequence: `X </s>`
|
223 |
+
- pair of sequences: `A </s> B </s>`
|
224 |
+
|
225 |
+
Args:
|
226 |
+
token_ids_0 (`List[int]`):
|
227 |
+
List of IDs to which the special tokens will be added.
|
228 |
+
token_ids_1 (`List[int]`, *optional*):
|
229 |
+
Optional second list of IDs for sequence pairs.
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
233 |
+
"""
|
234 |
+
token_ids_0 = self._add_eos_if_not_present(token_ids_0)
|
235 |
+
if token_ids_1 is None:
|
236 |
+
return token_ids_0
|
237 |
+
else:
|
238 |
+
token_ids_1 = self._add_eos_if_not_present(token_ids_1)
|
239 |
+
return token_ids_0 + token_ids_1
|
240 |
+
|
241 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__getstate__
|
242 |
+
def __getstate__(self):
|
243 |
+
state = self.__dict__.copy()
|
244 |
+
state["sp_model"] = None
|
245 |
+
return state
|
246 |
+
|
247 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.__setstate__
|
248 |
+
def __setstate__(self, d):
|
249 |
+
self.__dict__ = d
|
250 |
+
|
251 |
+
# for backward compatibility
|
252 |
+
if not hasattr(self, "sp_model_kwargs"):
|
253 |
+
self.sp_model_kwargs = {}
|
254 |
+
|
255 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
256 |
+
self.sp_model.Load(self.vocab_file)
|
257 |
+
|
258 |
+
def remove_punctuation(self, text: str) -> str:
|
259 |
+
return text.translate(str.maketrans("", "", string.punctuation))
|
260 |
+
|
261 |
+
# source: https://github.com/google-research/big_vision/blob/3b8e5ab6ad4f96e32b32826f9e1b8fd277914f9c/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
|
262 |
+
def canonicalize_text(self, text, *, keep_punctuation_exact_string=None):
|
263 |
+
"""Returns canonicalized `text` (puncuation removed).
|
264 |
+
|
265 |
+
Args:
|
266 |
+
text (`str`):
|
267 |
+
String to be canonicalized.
|
268 |
+
keep_punctuation_exact_string (`str`, *optional*):
|
269 |
+
If provided, then this exact string is kept. For example providing '{}' will keep any occurrences of '{}'
|
270 |
+
(but will still remove '{' and '}' that appear separately).
|
271 |
+
"""
|
272 |
+
if keep_punctuation_exact_string:
|
273 |
+
text = keep_punctuation_exact_string.join(
|
274 |
+
self.remove_punctuation(part) for part in text.split(keep_punctuation_exact_string)
|
275 |
+
)
|
276 |
+
else:
|
277 |
+
text = self.remove_punctuation(text)
|
278 |
+
text = re.sub(r"\s+", " ", text)
|
279 |
+
text = text.strip()
|
280 |
+
|
281 |
+
return text
|
282 |
+
|
283 |
+
def tokenize(self, text: "TextInput", add_special_tokens=False, **kwargs) -> List[str]:
|
284 |
+
"""
|
285 |
+
Converts a string to a list of tokens.
|
286 |
+
"""
|
287 |
+
tokens = super().tokenize(SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " "), **kwargs)
|
288 |
+
|
289 |
+
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
|
290 |
+
tokens = tokens[1:]
|
291 |
+
return tokens
|
292 |
+
|
293 |
+
@property
|
294 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.unk_token_length
|
295 |
+
def unk_token_length(self):
|
296 |
+
return len(self.sp_model.encode(str(self.unk_token)))
|
297 |
+
|
298 |
+
def _tokenize(self, text, **kwargs):
|
299 |
+
"""
|
300 |
+
Returns a tokenized string.
|
301 |
+
|
302 |
+
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
|
303 |
+
SPIECE_UNDERLINE.
|
304 |
+
|
305 |
+
For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give `['H', 'e', 'y']` instead of `['▁He', 'y']`.
|
306 |
+
|
307 |
+
Thus we always encode `f"{unk_token}text"` and strip the `unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
|
308 |
+
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
|
309 |
+
"""
|
310 |
+
text = self.canonicalize_text(text, keep_punctuation_exact_string=None)
|
311 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
312 |
+
|
313 |
+
# 1. Encode string + prefix ex: "<unk> Hey"
|
314 |
+
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
|
315 |
+
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
|
316 |
+
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
|
317 |
+
|
318 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_token_to_id
|
319 |
+
def _convert_token_to_id(self, token):
|
320 |
+
"""Converts a token (str) in an id using the vocab."""
|
321 |
+
return self.sp_model.piece_to_id(token)
|
322 |
+
|
323 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._convert_id_to_token
|
324 |
+
def _convert_id_to_token(self, index):
|
325 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
326 |
+
token = self.sp_model.IdToPiece(index)
|
327 |
+
return token
|
328 |
+
|
329 |
+
def convert_tokens_to_string(self, tokens):
|
330 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
331 |
+
current_sub_tokens = []
|
332 |
+
out_string = ""
|
333 |
+
prev_is_special = False
|
334 |
+
for token in tokens:
|
335 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
336 |
+
if token in self.all_special_tokens:
|
337 |
+
if not prev_is_special:
|
338 |
+
out_string += " "
|
339 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
340 |
+
prev_is_special = True
|
341 |
+
current_sub_tokens = []
|
342 |
+
else:
|
343 |
+
current_sub_tokens.append(token)
|
344 |
+
prev_is_special = False
|
345 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
346 |
+
return out_string.strip()
|
347 |
+
|
348 |
+
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.save_vocabulary
|
349 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
350 |
+
if not os.path.isdir(save_directory):
|
351 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
352 |
+
return
|
353 |
+
out_vocab_file = os.path.join(
|
354 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
355 |
+
)
|
356 |
+
|
357 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
358 |
+
copyfile(self.vocab_file, out_vocab_file)
|
359 |
+
elif not os.path.isfile(self.vocab_file):
|
360 |
+
with open(out_vocab_file, "wb") as fi:
|
361 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
362 |
+
fi.write(content_spiece_model)
|
363 |
+
|
364 |
+
return (out_vocab_file,)
|