File size: 9,280 Bytes
e6af450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0

import os
import json
import argparse
from safetensors.torch import load_file

import torch
import torch.distributed as dist
from data.data_utils import add_special_tokens
from modeling.bagel import (
    BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM, SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from modeling.autoencoder import load_ae

from PIL import Image
from modeling.bagel.qwen2_navit import NaiveCache


def move_generation_input_to_device(generation_input, device):
    # Utility to move all tensors in generation_input to device
    for k, v in generation_input.items():
        if isinstance(v, torch.Tensor):
            generation_input[k] = v.to(device)
    return generation_input


def setup_distributed():
    dist.init_process_group(backend="nccl")
    torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))


def generate_image(prompt, num_timesteps=50, cfg_scale=10.0, cfg_interval=[0, 1.0], cfg_renorm_min=0., timestep_shift=1.0, num_images=4, resolution=512, device=None):  # 添加device参数
    past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers)
    newlens = [0] * num_images
    new_rope = [0] * num_images

    generation_input, newlens, new_rope = gen_model.prepare_prompts(
        curr_kvlens=newlens,
        curr_rope=new_rope, 
        prompts=[prompt] * num_images,
        tokenizer=tokenizer, 
        new_token_ids=new_token_ids,
    )
    generation_input = move_generation_input_to_device(generation_input, device)

    with torch.no_grad():
        with torch.amp.autocast("cuda", enabled=True, dtype=torch.float16):
            past_key_values = gen_model.forward_cache_update_text(past_key_values, **generation_input)

    generation_input = gen_model.prepare_vae_latent(
        curr_kvlens=newlens,
        curr_rope=new_rope, 
        image_sizes=[(resolution, resolution)] * num_images, 
        new_token_ids=new_token_ids,
    )
    generation_input = move_generation_input_to_device(generation_input, device)

    cfg_past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers)
    cfg_newlens = [0] * num_images
    cfg_new_rope = [0] * num_images

    generation_input_cfg = model.prepare_vae_latent_cfg(
        curr_kvlens=cfg_newlens,
        curr_rope=cfg_new_rope, 
        image_sizes=[(resolution, resolution)] * num_images,
    )
    generation_input_cfg = move_generation_input_to_device(generation_input_cfg, device)

    with torch.no_grad():
        with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
            unpacked_latent = gen_model.generate_image(
                past_key_values=past_key_values,
                num_timesteps=num_timesteps,
                cfg_text_scale=cfg_scale,
                cfg_interval=cfg_interval,
                cfg_renorm_min=cfg_renorm_min,
                timestep_shift=timestep_shift,
                cfg_text_past_key_values=cfg_past_key_values,
                cfg_text_packed_position_ids=generation_input_cfg["cfg_packed_position_ids"],
                cfg_text_key_values_lens=generation_input_cfg["cfg_key_values_lens"],
                cfg_text_packed_query_indexes=generation_input_cfg["cfg_packed_query_indexes"],
                cfg_text_packed_key_value_indexes=generation_input_cfg["cfg_packed_key_value_indexes"],
                **generation_input,
            )

    image_list = []
    for latent in unpacked_latent:
        latent = latent.reshape(1, resolution//16, resolution//16, 2, 2, 16)
        latent = torch.einsum("nhwpqc->nchpwq", latent)
        latent = latent.reshape(1, 16, resolution//8, resolution//8)
        image = vae_model.decode(latent.to(device))
        tmpimage = ((image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy()
        tmpimage = Image.fromarray(tmpimage)
        image_list.append(tmpimage)

    return image_list


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Generate images using Bagel model.")
    parser.add_argument("--output_dir", type=str, required=True, help="Directory to save the generated images.")
    parser.add_argument("--metadata_file", type=str, required=True, help="JSONL file containing lines of metadata for each prompt.")
    parser.add_argument("--num_images", type=int, default=4)
    parser.add_argument("--batch_size", type=int, default=4)
    parser.add_argument("--cfg_scale", type=float, default=4)
    parser.add_argument("--resolution", type=int, default=1024)
    parser.add_argument("--max_latent_size", type=int, default=64)
    parser.add_argument('--model-path', type=str, default='hf/BAGEL-7B-MoT/')
    args = parser.parse_args()
    
    seed = 42
    if seed is not None:
        import random
        import numpy as np
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if torch.cuda.is_available():
            torch.cuda.manual_seed(seed)
            torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

    setup_distributed()
    rank = dist.get_rank()
    world_size = dist.get_world_size()
    device = f"cuda:{rank}"
    
    output_dir = args.output_dir
    os.makedirs(output_dir, exist_ok=True)
    if rank == 0:
        print(f"Output images are saved in {output_dir}")

    llm_config = Qwen2Config.from_json_file(os.path.join(args.model_path, "llm_config.json"))
    llm_config.qk_norm = True
    llm_config.tie_word_embeddings = False
    llm_config.layer_module = "Qwen2MoTDecoderLayer"

    vit_config = SiglipVisionConfig.from_json_file(os.path.join(args.model_path, "vit_config.json"))
    vit_config.rope = False
    vit_config.num_hidden_layers = vit_config.num_hidden_layers - 1

    vae_model, vae_config = load_ae(local_path=os.path.join(args.model_path, "ae.safetensors"))

    config = BagelConfig(
        visual_gen=True,
        visual_und=True,
        llm_config=llm_config, 
        vit_config=vit_config,
        vae_config=vae_config,
        vit_max_num_patch_per_side=70,
        connector_act='gelu_pytorch_tanh',
        latent_patch_size=2,
        max_latent_size=args.max_latent_size,
    )
    language_model = Qwen2ForCausalLM(llm_config)
    vit_model = SiglipVisionModel(vit_config)
    model = Bagel(language_model, vit_model, config)
    model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config)

    tokenizer = Qwen2Tokenizer.from_pretrained(args.model_path)
    tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)

    model_state_dict_path = os.path.join(args.model_path, "ema.safetensors")
    model_state_dict = load_file(model_state_dict_path, device="cpu")
    msg = model.load_state_dict(model_state_dict, strict=False)
    if rank == 0:
        print(msg)
    del model_state_dict

    model = model.to(device).eval()
    vae_model = vae_model.to(device).eval()
    gen_model = model

    cfg_scale = args.cfg_scale
    cfg_interval = [0, 1.0]
    timestep_shift = 3.0
    num_timesteps = 50
    cfg_renorm_min = 0.0

    with open(args.metadata_file, "r", encoding="utf-8") as fp:
        metadatas = [json.loads(line) for line in fp]
    total_metadatas = len(metadatas)
    
    prompts_per_gpu = (total_metadatas + world_size - 1) // world_size
    start = rank * prompts_per_gpu
    end = min(start + prompts_per_gpu, total_metadatas)
    print(f"GPU {rank}: Processing {end - start} prompts (indices {start} to {end - 1})")

    for idx in range(start, end):
        metadata = metadatas[idx]
        outpath = os.path.join(output_dir, f"{idx:0>5}")
        os.makedirs(outpath, exist_ok=True)
        prompt = metadata['prompt']
        print(f"GPU {rank} processing prompt {idx - start + 1}/{end - start}: '{prompt}'")

        sample_path = os.path.join(outpath, "samples")
        os.makedirs(sample_path, exist_ok=True)

        flag = True
        for idx in range(args.num_images):
            if not os.path.exists(os.path.join(sample_path, f"{idx:05}.png")):
                flag = False
                break
        if flag:
            print(f"GPU {rank} skipping generation for prompt: {prompt}")
            continue

        with open(os.path.join(outpath, "metadata.jsonl"), "w", encoding="utf-8") as fp:
            json.dump(metadata, fp)

        image_list = []

        for i in range(args.num_images // args.batch_size):
            tmp_image_list = generate_image(
                prompt=prompt,
                cfg_scale=cfg_scale, 
                cfg_interval=cfg_interval, 
                cfg_renorm_min=cfg_renorm_min,
                timestep_shift=timestep_shift, 
                num_timesteps=num_timesteps,
                num_images=args.batch_size,
                resolution=args.resolution,
                device=device,
            )
            image_list.extend(tmp_image_list)

        sample_count = 0
        for sample in image_list:
            sample = sample.crop(sample.getbbox())
            sample.save(os.path.join(sample_path, f"{sample_count:05}.png"))
            sample_count += 1

    print(f"GPU {rank} has completed all tasks")
    dist.barrier()