Spaces:
Paused
Paused
File size: 9,280 Bytes
e6af450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import os
import json
import argparse
from safetensors.torch import load_file
import torch
import torch.distributed as dist
from data.data_utils import add_special_tokens
from modeling.bagel import (
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM, SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from modeling.autoencoder import load_ae
from PIL import Image
from modeling.bagel.qwen2_navit import NaiveCache
def move_generation_input_to_device(generation_input, device):
# Utility to move all tensors in generation_input to device
for k, v in generation_input.items():
if isinstance(v, torch.Tensor):
generation_input[k] = v.to(device)
return generation_input
def setup_distributed():
dist.init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
def generate_image(prompt, num_timesteps=50, cfg_scale=10.0, cfg_interval=[0, 1.0], cfg_renorm_min=0., timestep_shift=1.0, num_images=4, resolution=512, device=None): # 添加device参数
past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers)
newlens = [0] * num_images
new_rope = [0] * num_images
generation_input, newlens, new_rope = gen_model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[prompt] * num_images,
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.no_grad():
with torch.amp.autocast("cuda", enabled=True, dtype=torch.float16):
past_key_values = gen_model.forward_cache_update_text(past_key_values, **generation_input)
generation_input = gen_model.prepare_vae_latent(
curr_kvlens=newlens,
curr_rope=new_rope,
image_sizes=[(resolution, resolution)] * num_images,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
cfg_past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers)
cfg_newlens = [0] * num_images
cfg_new_rope = [0] * num_images
generation_input_cfg = model.prepare_vae_latent_cfg(
curr_kvlens=cfg_newlens,
curr_rope=cfg_new_rope,
image_sizes=[(resolution, resolution)] * num_images,
)
generation_input_cfg = move_generation_input_to_device(generation_input_cfg, device)
with torch.no_grad():
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
unpacked_latent = gen_model.generate_image(
past_key_values=past_key_values,
num_timesteps=num_timesteps,
cfg_text_scale=cfg_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
timestep_shift=timestep_shift,
cfg_text_past_key_values=cfg_past_key_values,
cfg_text_packed_position_ids=generation_input_cfg["cfg_packed_position_ids"],
cfg_text_key_values_lens=generation_input_cfg["cfg_key_values_lens"],
cfg_text_packed_query_indexes=generation_input_cfg["cfg_packed_query_indexes"],
cfg_text_packed_key_value_indexes=generation_input_cfg["cfg_packed_key_value_indexes"],
**generation_input,
)
image_list = []
for latent in unpacked_latent:
latent = latent.reshape(1, resolution//16, resolution//16, 2, 2, 16)
latent = torch.einsum("nhwpqc->nchpwq", latent)
latent = latent.reshape(1, 16, resolution//8, resolution//8)
image = vae_model.decode(latent.to(device))
tmpimage = ((image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy()
tmpimage = Image.fromarray(tmpimage)
image_list.append(tmpimage)
return image_list
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate images using Bagel model.")
parser.add_argument("--output_dir", type=str, required=True, help="Directory to save the generated images.")
parser.add_argument("--metadata_file", type=str, required=True, help="JSONL file containing lines of metadata for each prompt.")
parser.add_argument("--num_images", type=int, default=4)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--cfg_scale", type=float, default=4)
parser.add_argument("--resolution", type=int, default=1024)
parser.add_argument("--max_latent_size", type=int, default=64)
parser.add_argument('--model-path', type=str, default='hf/BAGEL-7B-MoT/')
args = parser.parse_args()
seed = 42
if seed is not None:
import random
import numpy as np
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
setup_distributed()
rank = dist.get_rank()
world_size = dist.get_world_size()
device = f"cuda:{rank}"
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
if rank == 0:
print(f"Output images are saved in {output_dir}")
llm_config = Qwen2Config.from_json_file(os.path.join(args.model_path, "llm_config.json"))
llm_config.qk_norm = True
llm_config.tie_word_embeddings = False
llm_config.layer_module = "Qwen2MoTDecoderLayer"
vit_config = SiglipVisionConfig.from_json_file(os.path.join(args.model_path, "vit_config.json"))
vit_config.rope = False
vit_config.num_hidden_layers = vit_config.num_hidden_layers - 1
vae_model, vae_config = load_ae(local_path=os.path.join(args.model_path, "ae.safetensors"))
config = BagelConfig(
visual_gen=True,
visual_und=True,
llm_config=llm_config,
vit_config=vit_config,
vae_config=vae_config,
vit_max_num_patch_per_side=70,
connector_act='gelu_pytorch_tanh',
latent_patch_size=2,
max_latent_size=args.max_latent_size,
)
language_model = Qwen2ForCausalLM(llm_config)
vit_model = SiglipVisionModel(vit_config)
model = Bagel(language_model, vit_model, config)
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config)
tokenizer = Qwen2Tokenizer.from_pretrained(args.model_path)
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
model_state_dict_path = os.path.join(args.model_path, "ema.safetensors")
model_state_dict = load_file(model_state_dict_path, device="cpu")
msg = model.load_state_dict(model_state_dict, strict=False)
if rank == 0:
print(msg)
del model_state_dict
model = model.to(device).eval()
vae_model = vae_model.to(device).eval()
gen_model = model
cfg_scale = args.cfg_scale
cfg_interval = [0, 1.0]
timestep_shift = 3.0
num_timesteps = 50
cfg_renorm_min = 0.0
with open(args.metadata_file, "r", encoding="utf-8") as fp:
metadatas = [json.loads(line) for line in fp]
total_metadatas = len(metadatas)
prompts_per_gpu = (total_metadatas + world_size - 1) // world_size
start = rank * prompts_per_gpu
end = min(start + prompts_per_gpu, total_metadatas)
print(f"GPU {rank}: Processing {end - start} prompts (indices {start} to {end - 1})")
for idx in range(start, end):
metadata = metadatas[idx]
outpath = os.path.join(output_dir, f"{idx:0>5}")
os.makedirs(outpath, exist_ok=True)
prompt = metadata['prompt']
print(f"GPU {rank} processing prompt {idx - start + 1}/{end - start}: '{prompt}'")
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
flag = True
for idx in range(args.num_images):
if not os.path.exists(os.path.join(sample_path, f"{idx:05}.png")):
flag = False
break
if flag:
print(f"GPU {rank} skipping generation for prompt: {prompt}")
continue
with open(os.path.join(outpath, "metadata.jsonl"), "w", encoding="utf-8") as fp:
json.dump(metadata, fp)
image_list = []
for i in range(args.num_images // args.batch_size):
tmp_image_list = generate_image(
prompt=prompt,
cfg_scale=cfg_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
num_images=args.batch_size,
resolution=args.resolution,
device=device,
)
image_list.extend(tmp_image_list)
sample_count = 0
for sample in image_list:
sample = sample.crop(sample.getbbox())
sample.save(os.path.join(sample_path, f"{sample_count:05}.png"))
sample_count += 1
print(f"GPU {rank} has completed all tasks")
dist.barrier() |