Spaces:
Paused
Paused
File size: 14,550 Bytes
e6af450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import os
import json
import argparse
from safetensors.torch import load_file
import torch
import torch.distributed as dist
from data.data_utils import add_special_tokens
from modeling.bagel import (
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM, SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from modeling.autoencoder import load_ae
import copy
from PIL import Image
from modeling.bagel.qwen2_navit import NaiveCache
def setup_distributed():
dist.init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
SYSTEM_PROMPT = '''You should first think about the planning process in the mind and then generate the image.
The planning process is enclosed within <think> </think> tags, i.e. <think> planning process here </think> image here'''
def move_generation_input_to_device(generation_input, device):
# Utility to move all tensors in generation_input to device
for k, v in generation_input.items():
if isinstance(v, torch.Tensor):
generation_input[k] = v.to(device)
return generation_input
def generate_image_with_think(
prompt, num_timesteps=50, cfg_scale=4.0, cfg_interval=[0, 1.0], cfg_renorm_min=0., timestep_shift=4.0, resolution=1024,
max_length=2048, simple_think=False, device=None
):
h, w = resolution, resolution
past_key_values = NaiveCache(model.config.llm_config.num_hidden_layers)
newlens = [0]
new_rope = [0]
# system prompt
generation_input, newlens, new_rope = model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[SYSTEM_PROMPT],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
past_key_values = model.forward_cache_update_text(past_key_values, **generation_input)
########## cfg
generation_input_cfg = model.prepare_vae_latent_cfg(
curr_kvlens=newlens,
curr_rope=new_rope,
image_sizes=[(h, w)],
)
generation_input_cfg = move_generation_input_to_device(generation_input_cfg, device)
########## cfg
generation_input, newlens, new_rope = model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[prompt],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
past_key_values = model.forward_cache_update_text(past_key_values, **generation_input)
########## think
tmp_past_key_values = copy.deepcopy(past_key_values)
tmp_newlens = copy.deepcopy(newlens)
tmp_new_rope = copy.deepcopy(new_rope)
tmp_generation_input, tmp_newlens, tmp_new_rope = model.prepare_prompts(
curr_kvlens=tmp_newlens,
curr_rope=tmp_new_rope,
prompts=[prompt],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
tmp_generation_input = move_generation_input_to_device(tmp_generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
tmp_past_key_values = model.forward_cache_update_text(tmp_past_key_values, **tmp_generation_input)
tmp_generation_input = model.prepare_start_tokens(tmp_newlens, tmp_new_rope, new_token_ids)
tmp_generation_input = move_generation_input_to_device(tmp_generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
unpacked_latent = model.generate_text(
past_key_values=tmp_past_key_values,
max_length=max_length,
do_sample=True,
temperature=0.3,
end_token_id=new_token_ids['eos_token_id'],
**tmp_generation_input,
)
output = tokenizer.decode(unpacked_latent[:,0])
think_output = output.split('<|im_end|>')[0].split('<|im_start|>')[1]
print("="*30, "original think", "="*30)
print(think_output)
if simple_think:
think_output_list = think_output.split("</think>")
if think_output_list[1] != "":
think_output = think_output_list[1].strip()
print("="*30, "processed think", "="*30)
print(think_output)
########## think
generation_input, newlens, new_rope = model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[think_output],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
past_key_values = model.forward_cache_update_text(past_key_values, **generation_input)
generation_input = model.prepare_vae_latent(
curr_kvlens=newlens,
curr_rope=new_rope,
image_sizes=[(h, w)],
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
########## generate image
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
unpacked_latent = model.generate_image(
past_key_values=past_key_values,
num_timesteps=num_timesteps,
cfg_text_scale=cfg_scale,
cfg_interval=cfg_interval,
timestep_shift=timestep_shift,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type="global",
cfg_text_past_key_values=None,
cfg_text_packed_position_ids=generation_input_cfg["cfg_packed_position_ids"],
cfg_text_key_values_lens=generation_input_cfg["cfg_key_values_lens"],
cfg_text_packed_query_indexes=generation_input_cfg["cfg_packed_query_indexes"],
cfg_text_packed_key_value_indexes=generation_input_cfg["cfg_packed_key_value_indexes"],
**generation_input,
)
latent0 = unpacked_latent[0]
latent0 = latent0.reshape(1, h//16, w//16, 2, 2, 16)
latent0 = torch.einsum("nhwpqc->nchpwq", latent0)
latent0 = latent0.reshape(1, 16, h//8, w//8)
image = vae_model.decode(latent0.to(device))
tmpimage = ((image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy()
tmpimage = Image.fromarray(tmpimage)
return tmpimage, think_output
def generate_image(prompt, num_timesteps=50, cfg_scale=4.0, cfg_interval=[0, 1.0], cfg_renorm_min=0., timestep_shift=1.0, resolution=1024, device=None):
past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers)
newlens = [0]
new_rope = [0]
generation_input, newlens, new_rope = gen_model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[prompt],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.no_grad():
with torch.amp.autocast("cuda", enabled=True, dtype=torch.float16):
past_key_values = gen_model.forward_cache_update_text(past_key_values, **generation_input)
generation_input = gen_model.prepare_vae_latent(
curr_kvlens=newlens,
curr_rope=new_rope,
image_sizes=[(resolution, resolution)],
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
cfg_past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers)
cfg_newlens = [0]
cfg_new_rope = [0]
generation_input_cfg = model.prepare_vae_latent_cfg(
curr_kvlens=cfg_newlens,
curr_rope=cfg_new_rope,
image_sizes=[(resolution, resolution)],
)
generation_input_cfg = move_generation_input_to_device(generation_input_cfg, device)
with torch.no_grad():
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
unpacked_latent = gen_model.generate_image(
past_key_values=past_key_values,
num_timesteps=num_timesteps,
cfg_text_scale=cfg_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
timestep_shift=timestep_shift,
cfg_text_past_key_values=cfg_past_key_values,
cfg_text_packed_position_ids=generation_input_cfg["cfg_packed_position_ids"],
cfg_text_key_values_lens=generation_input_cfg["cfg_key_values_lens"],
cfg_text_packed_query_indexes=generation_input_cfg["cfg_packed_query_indexes"],
cfg_text_packed_key_value_indexes=generation_input_cfg["cfg_packed_key_value_indexes"],
**generation_input,
)
latent = unpacked_latent[0]
latent = latent.reshape(1, resolution//16, resolution//16, 2, 2, 16)
latent = torch.einsum("nhwpqc->nchpwq", latent)
latent = latent.reshape(1, 16, resolution//8, resolution//8)
image = vae_model.decode(latent.to(device))
tmpimage = ((image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy()
tmpimage = Image.fromarray(tmpimage)
return tmpimage
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate images using Bagel model.")
parser.add_argument("--output_dir", type=str, required=True, help="Directory to save the generated images.")
parser.add_argument("--metadata_file", type=str, required=True, help="JSON file containing lines of metadata for each prompt.")
parser.add_argument("--cfg_scale", type=float, default=4)
parser.add_argument("--resolution", type=int, default=1024)
parser.add_argument("--max_latent_size", type=int, default=64)
parser.add_argument("--think", action="store_true")
parser.add_argument('--model-path', type=str, default='hf/BAGEL-7B-MoT/')
args = parser.parse_args()
seed = 42
if seed is not None:
import random
import numpy as np
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
setup_distributed()
rank = dist.get_rank()
world_size = dist.get_world_size()
device = f"cuda:{rank}"
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
if rank == 0:
print(f"Output images are saved in {output_dir}")
llm_config = Qwen2Config.from_json_file(os.path.join(args.model_path, "llm_config.json"))
llm_config.qk_norm = True
llm_config.tie_word_embeddings = False
llm_config.layer_module = "Qwen2MoTDecoderLayer"
vit_config = SiglipVisionConfig.from_json_file(os.path.join(args.model_path, "vit_config.json"))
vit_config.rope = False
vit_config.num_hidden_layers = vit_config.num_hidden_layers - 1
vae_model, vae_config = load_ae(local_path=os.path.join(args.model_path, "ae.safetensors"))
config = BagelConfig(
visual_gen=True,
visual_und=True,
llm_config=llm_config,
vit_config=vit_config,
vae_config=vae_config,
vit_max_num_patch_per_side=70,
connector_act='gelu_pytorch_tanh',
latent_patch_size=2,
max_latent_size=args.max_latent_size,
)
language_model = Qwen2ForCausalLM(llm_config)
vit_model = SiglipVisionModel(vit_config)
model = Bagel(language_model, vit_model, config)
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config)
tokenizer = Qwen2Tokenizer.from_pretrained(args.model_path)
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
model_state_dict_path = os.path.join(args.model_path, "ema.safetensors")
model_state_dict = load_file(model_state_dict_path, device="cpu")
msg = model.load_state_dict(model_state_dict, strict=False)
if rank == 0:
print(msg)
del model_state_dict
model = model.to(device).eval()
vae_model = vae_model.to(device).eval()
gen_model = model
cfg_scale = args.cfg_scale
cfg_interval = [0.4, 1.0]
timestep_shift = 3.0
num_timesteps = 50
cfg_renorm_min = 0.0
with open(args.metadata_file, "r") as f:
metadatas = json.load(f)
total_metadatas = len(metadatas)
prompts_per_gpu = (total_metadatas + world_size - 1) // world_size
start = rank * prompts_per_gpu
end = min(start + prompts_per_gpu, total_metadatas)
print(f"GPU {rank}: Processing {end - start} prompts (indices {start} to {end - 1})")
for idx in range(start, end):
metadata = metadatas[idx]
prompt = metadata['Prompt']
prompt_id = metadata['prompt_id']
outpath = os.path.join(output_dir, f"{prompt_id}.png")
print(f"GPU {rank} processing prompt {idx - start + 1}/{end - start}: '{prompt}'")
if os.path.exists(outpath):
print(f"GPU {rank} skipping generation for prompt: {prompt}")
continue
if args.think:
tmpimage, think_output = generate_image_with_think(
prompt=prompt,
cfg_scale=cfg_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
resolution=args.resolution,
max_length=2048,
simple_think=False,
device=device,
)
with open(outpath.replace(".png", ".txt"), "w") as f:
f.write(think_output)
else:
tmpimage = generate_image(
prompt=prompt,
cfg_scale=cfg_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
resolution=args.resolution,
device=device,
)
tmpimage = tmpimage.crop(tmpimage.getbbox())
tmpimage.save(outpath)
print(f"GPU {rank} has completed all tasks")
dist.barrier()
|