Spaces:
Paused
Paused
File size: 13,199 Bytes
e6af450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
# Copyright (c) 2023 Dhruba Ghosh
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: MIT
#
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
#
# Original file was released under MIT, with the full license text
# available at https://github.com/djghosh13/geneval/blob/main/LICENSE.
#
# This modified file is released under the same license.
import argparse
import json
import os
import re
import sys
import time
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
from PIL import Image, ImageOps
import torch
import torch.distributed as dist
import mmdet
from mmdet.apis import inference_detector, init_detector
import open_clip
from clip_benchmark.metrics import zeroshot_classification as zsc
zsc.tqdm = lambda it, *args, **kwargs: it
def setup_distributed():
"""初始化分布式环境"""
dist.init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
# Get directory path
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("imagedir", type=str)
parser.add_argument("--outfile", type=str, default="results.jsonl")
parser.add_argument("--model-config", type=str, default=None)
parser.add_argument("--model-path", type=str, default="./")
# Other arguments
parser.add_argument("--options", nargs="*", type=str, default=[])
args = parser.parse_args()
args.options = dict(opt.split("=", 1) for opt in args.options)
if args.model_config is None:
args.model_config = os.path.join(
os.path.dirname(mmdet.__file__),
"../configs/mask2former/mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco.py"
)
return args
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
assert DEVICE == "cuda"
def timed(fn):
def wrapper(*args, **kwargs):
startt = time.time()
result = fn(*args, **kwargs)
endt = time.time()
print(f'Function {fn.__name__!r} executed in {endt - startt:.3f}s', file=sys.stderr)
return result
return wrapper
# Load models
@timed
def load_models(args):
CONFIG_PATH = args.model_config
OBJECT_DETECTOR = args.options.get('model', "mask2former_swin-s-p4-w7-224_lsj_8x2_50e_coco")
CKPT_PATH = os.path.join(args.model_path, f"{OBJECT_DETECTOR}.pth")
object_detector = init_detector(CONFIG_PATH, CKPT_PATH, device=DEVICE)
clip_arch = args.options.get('clip_model', "ViT-L-14")
clip_model, _, transform = open_clip.create_model_and_transforms(clip_arch, pretrained="openai", device=DEVICE)
tokenizer = open_clip.get_tokenizer(clip_arch)
with open(os.path.join(os.path.dirname(__file__), "object_names.txt")) as cls_file:
classnames = [line.strip() for line in cls_file]
return object_detector, (clip_model, transform, tokenizer), classnames
COLORS = ["red", "orange", "yellow", "green", "blue", "purple", "pink", "brown", "black", "white"]
COLOR_CLASSIFIERS = {}
# Evaluation parts
class ImageCrops(torch.utils.data.Dataset):
def __init__(self, image: Image.Image, objects):
self._image = image.convert("RGB")
bgcolor = args.options.get('bgcolor', "#999")
if bgcolor == "original":
self._blank = self._image.copy()
else:
self._blank = Image.new("RGB", image.size, color=bgcolor)
self._objects = objects
def __len__(self):
return len(self._objects)
def __getitem__(self, index):
box, mask = self._objects[index]
if mask is not None:
assert tuple(self._image.size[::-1]) == tuple(mask.shape), (index, self._image.size[::-1], mask.shape)
image = Image.composite(self._image, self._blank, Image.fromarray(mask))
else:
image = self._image
if args.options.get('crop', '1') == '1':
image = image.crop(box[:4])
# if args.save:
# base_count = len(os.listdir(args.save))
# image.save(os.path.join(args.save, f"cropped_{base_count:05}.png"))
return (transform(image), 0)
def color_classification(image, bboxes, classname):
if classname not in COLOR_CLASSIFIERS:
COLOR_CLASSIFIERS[classname] = zsc.zero_shot_classifier(
clip_model, tokenizer, COLORS,
[
f"a photo of a {{c}} {classname}",
f"a photo of a {{c}}-colored {classname}",
f"a photo of a {{c}} object"
],
DEVICE
)
clf = COLOR_CLASSIFIERS[classname]
dataloader = torch.utils.data.DataLoader(
ImageCrops(image, bboxes),
batch_size=16, num_workers=4
)
with torch.no_grad():
pred, _ = zsc.run_classification(clip_model, clf, dataloader, DEVICE)
return [COLORS[index.item()] for index in pred.argmax(1)]
def compute_iou(box_a, box_b):
area_fn = lambda box: max(box[2] - box[0] + 1, 0) * max(box[3] - box[1] + 1, 0)
i_area = area_fn([
max(box_a[0], box_b[0]), max(box_a[1], box_b[1]),
min(box_a[2], box_b[2]), min(box_a[3], box_b[3])
])
u_area = area_fn(box_a) + area_fn(box_b) - i_area
return i_area / u_area if u_area else 0
def relative_position(obj_a, obj_b):
"""Give position of A relative to B, factoring in object dimensions"""
boxes = np.array([obj_a[0], obj_b[0]])[:, :4].reshape(2, 2, 2)
center_a, center_b = boxes.mean(axis=-2)
dim_a, dim_b = np.abs(np.diff(boxes, axis=-2))[..., 0, :]
offset = center_a - center_b
#
revised_offset = np.maximum(np.abs(offset) - POSITION_THRESHOLD * (dim_a + dim_b), 0) * np.sign(offset)
if np.all(np.abs(revised_offset) < 1e-3):
return set()
#
dx, dy = revised_offset / np.linalg.norm(offset)
relations = set()
if dx < -0.5: relations.add("left of")
if dx > 0.5: relations.add("right of")
if dy < -0.5: relations.add("above")
if dy > 0.5: relations.add("below")
return relations
def evaluate(image, objects, metadata):
"""
Evaluate given image using detected objects on the global metadata specifications.
Assumptions:
* Metadata combines 'include' clauses with AND, and 'exclude' clauses with OR
* All clauses are independent, i.e., duplicating a clause has no effect on the correctness
* CHANGED: Color and position will only be evaluated on the most confidently predicted objects;
therefore, objects are expected to appear in sorted order
"""
correct = True
reason = []
matched_groups = []
# Check for expected objects
for req in metadata.get('include', []):
classname = req['class']
matched = True
found_objects = objects.get(classname, [])[:req['count']]
if len(found_objects) < req['count']:
correct = matched = False
reason.append(f"expected {classname}>={req['count']}, found {len(found_objects)}")
else:
if 'color' in req:
# Color check
colors = color_classification(image, found_objects, classname)
if colors.count(req['color']) < req['count']:
correct = matched = False
reason.append(
f"expected {req['color']} {classname}>={req['count']}, found " +
f"{colors.count(req['color'])} {req['color']}; and " +
", ".join(f"{colors.count(c)} {c}" for c in COLORS if c in colors)
)
if 'position' in req and matched:
# Relative position check
expected_rel, target_group = req['position']
if matched_groups[target_group] is None:
correct = matched = False
reason.append(f"no target for {classname} to be {expected_rel}")
else:
for obj in found_objects:
for target_obj in matched_groups[target_group]:
true_rels = relative_position(obj, target_obj)
if expected_rel not in true_rels:
correct = matched = False
reason.append(
f"expected {classname} {expected_rel} target, found " +
f"{' and '.join(true_rels)} target"
)
break
if not matched:
break
if matched:
matched_groups.append(found_objects)
else:
matched_groups.append(None)
# Check for non-expected objects
for req in metadata.get('exclude', []):
classname = req['class']
if len(objects.get(classname, [])) >= req['count']:
correct = False
reason.append(f"expected {classname}<{req['count']}, found {len(objects[classname])}")
return correct, "\n".join(reason)
def evaluate_image(filepath, metadata):
result = inference_detector(object_detector, filepath)
bbox = result[0] if isinstance(result, tuple) else result
segm = result[1] if isinstance(result, tuple) and len(result) > 1 else None
image = ImageOps.exif_transpose(Image.open(filepath))
detected = {}
# Determine bounding boxes to keep
confidence_threshold = THRESHOLD if metadata['tag'] != "counting" else COUNTING_THRESHOLD
for index, classname in enumerate(classnames):
ordering = np.argsort(bbox[index][:, 4])[::-1]
ordering = ordering[bbox[index][ordering, 4] > confidence_threshold] # Threshold
ordering = ordering[:MAX_OBJECTS].tolist() # Limit number of detected objects per class
detected[classname] = []
while ordering:
max_obj = ordering.pop(0)
detected[classname].append((bbox[index][max_obj], None if segm is None else segm[index][max_obj]))
ordering = [
obj for obj in ordering
if NMS_THRESHOLD == 1 or compute_iou(bbox[index][max_obj], bbox[index][obj]) < NMS_THRESHOLD
]
if not detected[classname]:
del detected[classname]
# Evaluate
is_correct, reason = evaluate(image, detected, metadata)
return {
'filename': filepath,
'tag': metadata['tag'],
'prompt': metadata['prompt'],
'correct': is_correct,
'reason': reason,
'metadata': json.dumps(metadata),
'details': json.dumps({
key: [box.tolist() for box, _ in value]
for key, value in detected.items()
})
}
if __name__ == "__main__":
args = parse_args()
THRESHOLD = float(args.options.get('threshold', 0.3))
COUNTING_THRESHOLD = float(args.options.get('counting_threshold', 0.9))
MAX_OBJECTS = int(args.options.get('max_objects', 16))
NMS_THRESHOLD = float(args.options.get('max_overlap', 1.0))
POSITION_THRESHOLD = float(args.options.get('position_threshold', 0.1))
# Initialize distributed environment
setup_distributed()
rank = dist.get_rank()
world_size = dist.get_world_size()
device = f"cuda:{rank}"
# Load models
if rank == 0:
print(f"[Rank 0] Loading model...")
object_detector, (clip_model, transform, tokenizer), classnames = load_models(args)
full_results = []
subfolders = [f for f in os.listdir(args.imagedir) if os.path.isdir(os.path.join(args.imagedir, f)) and f.isdigit()]
total_subfolders = len(subfolders)
# Divide subfolders to process by GPU
subfolders_per_gpu = (total_subfolders + world_size - 1) // world_size
start = rank * subfolders_per_gpu
end = min(start + subfolders_per_gpu, total_subfolders)
print(f"GPU {rank}: Processing {end - start} subfolders (index {start} to {end - 1})")
for subfolder in tqdm(subfolders[start:end]):
folderpath = os.path.join(args.imagedir, subfolder)
with open(os.path.join(folderpath, "metadata.jsonl")) as fp:
metadata = json.load(fp)
# Evaluate each image
for imagename in os.listdir(os.path.join(folderpath, "samples")):
imagepath = os.path.join(folderpath, "samples", imagename)
if not os.path.isfile(imagepath) or not re.match(r"\d+\.png", imagename):
continue
result = evaluate_image(imagepath, metadata)
full_results.append(result)
# Synchronize results from all GPUs
all_results = [None] * world_size
dist.all_gather_object(all_results, full_results)
if rank == 0:
# Merge results from all GPUs
final_results = []
for results in all_results:
final_results.extend(results)
# Save results
if os.path.dirname(args.outfile):
os.makedirs(os.path.dirname(args.outfile), exist_ok=True)
with open(args.outfile, "w") as fp:
pd.DataFrame(final_results).to_json(fp, orient="records", lines=True)
print("All GPUs have completed their tasks and the final results have been saved.")
else:
print(f"GPU {rank} has completed all tasks")
|