Spaces:
Paused
Paused
File size: 10,042 Bytes
e6af450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import json
import os
import base64
import re
import argparse
import openai
from pathlib import Path
from typing import Dict, Any, List
import concurrent.futures
openai.api_key = os.getenv('OPENAI_API_KEY')
print(openai.api_key)
def parse_arguments():
parser = argparse.ArgumentParser(description='Image Quality Assessment Tool')
parser.add_argument('--json_path', required=True,
help='Path to the prompts JSON file')
parser.add_argument('--image_dir', required=True,
help='Path to the image directory')
parser.add_argument('--output_dir', required=True,
help='Path to the output directory')
return parser.parse_args()
def get_config(args):
filename = args.json_path.split("/")[-1].split(".")[0]
return {
"json_path": args.json_path,
"image_dir": args.image_dir,
"output_dir": args.output_dir,
"result_files": {
"full": f"{filename}_full.jsonl",
"scores": f"{filename}_scores.jsonl",
}
}
def extract_scores(evaluation_text: str) -> Dict[str, float]:
score_pattern = r"\*{0,2}(Consistency|Realism|Aesthetic Quality)\*{0,2}\s*[::]?\s*(\d)"
matches = re.findall(score_pattern, evaluation_text, re.IGNORECASE)
scores = {
"consistency": 9.9,
"realism": 9.9,
"aesthetic_quality": 9.9
}
for key, value in matches:
key = key.lower().replace(" ", "_")
if key in scores:
scores[key] = float(value)
return scores
def encode_image(image_path: str) -> str:
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def load_prompts(json_path: str) -> Dict[int, Dict[str, Any]]:
with open(json_path, 'r') as f:
data = json.load(f)
return {item["prompt_id"]: item for item in data}
def build_evaluation_messages(prompt_data: Dict, image_base64: str) -> list:
return [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a professional Vincennes image quality audit expert, please evaluate the image quality strictly according to the protocol."
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": f"""Please evaluate strictly and return ONLY the three scores as requested.
# Text-to-Image Quality Evaluation Protocol
## System Instruction
You are an AI quality auditor for text-to-image generation. Apply these rules with ABSOLUTE RUTHLESSNESS. Only images meeting the HIGHEST standards should receive top scores.
**Input Parameters**
- PROMPT: [User's original prompt to]
- EXPLANATION: [Further explanation of the original prompt]
---
## Scoring Criteria
**Consistency (0-2):** How accurately and completely the image reflects the PROMPT.
* **0 (Rejected):** Fails to capture key elements of the prompt, or contradicts the prompt.
* **1 (Conditional):** Partially captures the prompt. Some elements are present, but not all, or not accurately. Noticeable deviations from the prompt's intent.
* **2 (Exemplary):** Perfectly and completely aligns with the PROMPT. Every single element and nuance of the prompt is flawlessly represented in the image. The image is an ideal, unambiguous visual realization of the given prompt.
**Realism (0-2):** How realistically the image is rendered.
* **0 (Rejected):** Physically implausible and clearly artificial. Breaks fundamental laws of physics or visual realism.
* **1 (Conditional):** Contains minor inconsistencies or unrealistic elements. While somewhat believable, noticeable flaws detract from realism.
* **2 (Exemplary):** Achieves photorealistic quality, indistinguishable from a real photograph. Flawless adherence to physical laws, accurate material representation, and coherent spatial relationships. No visual cues betraying AI generation.
**Aesthetic Quality (0-2):** The overall artistic appeal and visual quality of the image.
* **0 (Rejected):** Poor aesthetic composition, visually unappealing, and lacks artistic merit.
* **1 (Conditional):** Demonstrates basic visual appeal, acceptable composition, and color harmony, but lacks distinction or artistic flair.
* **2 (Exemplary):** Possesses exceptional aesthetic quality, comparable to a masterpiece. Strikingly beautiful, with perfect composition, a harmonious color palette, and a captivating artistic style. Demonstrates a high degree of artistic vision and execution.
---
## Output Format
**Do not include any other text, explanations, or labels.** You must return only three lines of text, each containing a metric and the corresponding score, for example:
**Example Output:**
Consistency: 2
Realism: 1
Aesthetic Quality: 0
---
**IMPORTANT Enforcement:**
Be EXTREMELY strict in your evaluation. A score of '2' should be exceedingly rare and reserved only for images that truly excel and meet the highest possible standards in each metric. If there is any doubt, downgrade the score.
For **Consistency**, a score of '2' requires complete and flawless adherence to every aspect of the prompt, leaving no room for misinterpretation or omission.
For **Realism**, a score of '2' means the image is virtually indistinguishable from a real photograph in terms of detail, lighting, physics, and material properties.
For **Aesthetic Quality**, a score of '2' demands exceptional artistic merit, not just pleasant visuals.
---
Here are the Prompt and EXPLANATION for this evaluation:
PROMPT: "{prompt_data['Prompt']}"
EXPLANATION: "{prompt_data['Explanation']}"
Please strictly adhere to the scoring criteria and follow the template format when providing your results."""
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_base64}"
}
}
]
}
]
def evaluate_image(prompt_data: Dict, image_path: str, config: Dict) -> Dict[str, Any]:
try:
base64_image = encode_image(image_path)
messages = build_evaluation_messages(prompt_data, base64_image)
response = openai_client.chat.completions.create(
model=model,
messages=messages,
temperature=0.0,
max_tokens=2000,
n=1,
)
response = response.to_dict()
evaluation_text = response['choices'][0]['message']['content'].strip()
scores = extract_scores(evaluation_text)
return {
"evaluation": evaluation_text,
**scores
}
except Exception as e:
return {
"evaluation": f"Evaluation failed: {str(e)}",
"consistency": 9.9,
"realism": 9.9,
"aesthetic_quality": 9.9
}
def save_results(data, filename, config):
path = os.path.join(config["output_dir"], filename)
assert filename.endswith('.jsonl')
with open(path, 'a', encoding='utf-8') as f:
json_line = json.dumps(data, ensure_ascii=False)
f.write(json_line + '\n')
def process_prompt(prompt_id, prompt_data, config):
image_path = os.path.join(config["image_dir"], f"{prompt_id}.png")
if not os.path.exists(image_path):
print(f"Warning: Image not found {image_path}")
return None
print(f"Evaluating prompt_id: {prompt_id}...")
evaluation_result = evaluate_image(prompt_data, image_path, config)
full_record = {
"prompt_id": prompt_id,
"prompt": prompt_data["Prompt"],
"key": prompt_data["Explanation"],
"image_path": image_path,
"evaluation": evaluation_result["evaluation"]
}
score_record = {
"prompt_id": prompt_id,
"Subcategory": prompt_data["Subcategory"],
"consistency": evaluation_result["consistency"],
"realism": evaluation_result["realism"],
"aesthetic_quality": evaluation_result["aesthetic_quality"]
}
return full_record, score_record
if __name__ == "__main__":
api_key = openai.api_key
base_url = "your_api_url",
api_version = "2024-03-01-preview"
model = "gpt-4o-2024-11-20"
openai_client = openai.AzureOpenAI(
azure_endpoint=base_url,
api_version=api_version,
api_key=api_key,
)
args = parse_arguments()
config = get_config(args)
Path(config["output_dir"]).mkdir(parents=True, exist_ok=True)
prompts = load_prompts(config["json_path"])
processed_ids = set()
if os.path.exists(os.path.join(config["output_dir"], config["result_files"]["full"])):
with open(os.path.join(config["output_dir"], config["result_files"]["full"]), 'r', encoding='utf-8') as f:
for line in f:
data = json.loads(line)
processed_ids.add(data["prompt_id"])
left_prompts = {k: v for k, v in prompts.items() if k not in processed_ids}
print(f"Process {len(left_prompts)} prompts...")
MAX_THREADS = 30
with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_THREADS) as executor:
futures = [executor.submit(process_prompt, prompt_id, prompt_data, config)
for prompt_id, prompt_data in left_prompts.items()]
for future in concurrent.futures.as_completed(futures):
try:
result = future.result()
if result:
full_record, score_record = result
print(full_record)
save_results(full_record, config["result_files"]["full"], config)
save_results(score_record, config["result_files"]["scores"], config)
except Exception as e:
print(f"An error occurred: {e}") |