File size: 10,042 Bytes
e6af450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0

import json
import os
import base64
import re
import argparse
import openai
from pathlib import Path
from typing import Dict, Any, List
import concurrent.futures

openai.api_key = os.getenv('OPENAI_API_KEY')
print(openai.api_key)


def parse_arguments():
    parser = argparse.ArgumentParser(description='Image Quality Assessment Tool')

    parser.add_argument('--json_path', required=True,
                        help='Path to the prompts JSON file')
    parser.add_argument('--image_dir', required=True,
                        help='Path to the image directory')
    parser.add_argument('--output_dir', required=True,
                        help='Path to the output directory')

    return parser.parse_args()


def get_config(args):
    filename = args.json_path.split("/")[-1].split(".")[0]
    return {
        "json_path": args.json_path,
        "image_dir": args.image_dir,
        "output_dir": args.output_dir,
        "result_files": {
            "full": f"{filename}_full.jsonl",
            "scores": f"{filename}_scores.jsonl",
        }
    }


def extract_scores(evaluation_text: str) -> Dict[str, float]:
    score_pattern = r"\*{0,2}(Consistency|Realism|Aesthetic Quality)\*{0,2}\s*[::]?\s*(\d)"
    matches = re.findall(score_pattern, evaluation_text, re.IGNORECASE)

    scores = {
        "consistency": 9.9,
        "realism": 9.9,
        "aesthetic_quality": 9.9
    }

    for key, value in matches:
        key = key.lower().replace(" ", "_")
        if key in scores:
            scores[key] = float(value)

    return scores


def encode_image(image_path: str) -> str:
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')


def load_prompts(json_path: str) -> Dict[int, Dict[str, Any]]:
    with open(json_path, 'r') as f:
        data = json.load(f)
    return {item["prompt_id"]: item for item in data}


def build_evaluation_messages(prompt_data: Dict, image_base64: str) -> list:
    return [
        {
            "role": "system",
            "content": [
                {
                    "type": "text",
                    "text": "You are a professional Vincennes image quality audit expert, please evaluate the image quality strictly according to the protocol."
                }
            ]
        },
        {
            "role": "user",
            "content": [
                {
                    "type": "text",
                    "text": f"""Please evaluate strictly and return ONLY the three scores as requested.

# Text-to-Image Quality Evaluation Protocol

## System Instruction
You are an AI quality auditor for text-to-image generation. Apply these rules with ABSOLUTE RUTHLESSNESS. Only images meeting the HIGHEST standards should receive top scores.

**Input Parameters**  
- PROMPT: [User's original prompt to]  
- EXPLANATION: [Further explanation of the original prompt] 
---

## Scoring Criteria

**Consistency (0-2):**  How accurately and completely the image reflects the PROMPT.
* **0 (Rejected):**  Fails to capture key elements of the prompt, or contradicts the prompt.
* **1 (Conditional):** Partially captures the prompt. Some elements are present, but not all, or not accurately.  Noticeable deviations from the prompt's intent.
* **2 (Exemplary):**  Perfectly and completely aligns with the PROMPT.  Every single element and nuance of the prompt is flawlessly represented in the image. The image is an ideal, unambiguous visual realization of the given prompt.

**Realism (0-2):**  How realistically the image is rendered.
* **0 (Rejected):**  Physically implausible and clearly artificial. Breaks fundamental laws of physics or visual realism.
* **1 (Conditional):** Contains minor inconsistencies or unrealistic elements.  While somewhat believable, noticeable flaws detract from realism.
* **2 (Exemplary):**  Achieves photorealistic quality, indistinguishable from a real photograph.  Flawless adherence to physical laws, accurate material representation, and coherent spatial relationships. No visual cues betraying AI generation.

**Aesthetic Quality (0-2):**  The overall artistic appeal and visual quality of the image.
* **0 (Rejected):**  Poor aesthetic composition, visually unappealing, and lacks artistic merit.
* **1 (Conditional):**  Demonstrates basic visual appeal, acceptable composition, and color harmony, but lacks distinction or artistic flair.
* **2 (Exemplary):**  Possesses exceptional aesthetic quality, comparable to a masterpiece.  Strikingly beautiful, with perfect composition, a harmonious color palette, and a captivating artistic style. Demonstrates a high degree of artistic vision and execution.

---

## Output Format

**Do not include any other text, explanations, or labels.** You must return only three lines of text, each containing a metric and the corresponding score, for example:

**Example Output:**
Consistency: 2
Realism: 1
Aesthetic Quality: 0

---

**IMPORTANT Enforcement:**

Be EXTREMELY strict in your evaluation. A score of '2' should be exceedingly rare and reserved only for images that truly excel and meet the highest possible standards in each metric. If there is any doubt, downgrade the score.

For **Consistency**, a score of '2' requires complete and flawless adherence to every aspect of the prompt, leaving no room for misinterpretation or omission.

For **Realism**, a score of '2' means the image is virtually indistinguishable from a real photograph in terms of detail, lighting, physics, and material properties.

For **Aesthetic Quality**, a score of '2' demands exceptional artistic merit, not just pleasant visuals.

--- 
Here are the Prompt and EXPLANATION for this evaluation:
PROMPT: "{prompt_data['Prompt']}"
EXPLANATION: "{prompt_data['Explanation']}"
Please strictly adhere to the scoring criteria and follow the template format when providing your results."""
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/png;base64,{image_base64}"
                    }
                }
            ]
        }
    ]


def evaluate_image(prompt_data: Dict, image_path: str, config: Dict) -> Dict[str, Any]:
    try:
        base64_image = encode_image(image_path)
        messages = build_evaluation_messages(prompt_data, base64_image)

        response = openai_client.chat.completions.create(
            model=model,
            messages=messages,
            temperature=0.0,
            max_tokens=2000,
            n=1,
        )
        response = response.to_dict()

        evaluation_text = response['choices'][0]['message']['content'].strip()
        scores = extract_scores(evaluation_text)

        return {
            "evaluation": evaluation_text,
            **scores
        }
    except Exception as e:
        return {
            "evaluation": f"Evaluation failed: {str(e)}",
            "consistency": 9.9,
            "realism": 9.9,
            "aesthetic_quality": 9.9
        }


def save_results(data, filename, config):
    path = os.path.join(config["output_dir"], filename)

    assert filename.endswith('.jsonl')
    with open(path, 'a', encoding='utf-8') as f:
        json_line = json.dumps(data, ensure_ascii=False)
        f.write(json_line + '\n')


def process_prompt(prompt_id, prompt_data, config):
    image_path = os.path.join(config["image_dir"], f"{prompt_id}.png")

    if not os.path.exists(image_path):
        print(f"Warning: Image not found {image_path}")
        return None

    print(f"Evaluating prompt_id: {prompt_id}...")
    evaluation_result = evaluate_image(prompt_data, image_path, config)

    full_record = {
        "prompt_id": prompt_id,
        "prompt": prompt_data["Prompt"],
        "key": prompt_data["Explanation"],
        "image_path": image_path,
        "evaluation": evaluation_result["evaluation"]
    }

    score_record = {
        "prompt_id": prompt_id,
        "Subcategory": prompt_data["Subcategory"],
        "consistency": evaluation_result["consistency"],
        "realism": evaluation_result["realism"],
        "aesthetic_quality": evaluation_result["aesthetic_quality"]
    }

    return full_record, score_record


if __name__ == "__main__":
    api_key = openai.api_key
    base_url = "your_api_url",
    api_version = "2024-03-01-preview"
    model = "gpt-4o-2024-11-20"

    openai_client = openai.AzureOpenAI(
        azure_endpoint=base_url,
        api_version=api_version,
        api_key=api_key,
    )

    args = parse_arguments()
    config = get_config(args)
    Path(config["output_dir"]).mkdir(parents=True, exist_ok=True)

    prompts = load_prompts(config["json_path"])
    
    processed_ids = set()
    if os.path.exists(os.path.join(config["output_dir"], config["result_files"]["full"])):
        with open(os.path.join(config["output_dir"], config["result_files"]["full"]), 'r', encoding='utf-8') as f:
            for line in f:
                data = json.loads(line)
                processed_ids.add(data["prompt_id"])
    left_prompts = {k: v for k, v in prompts.items() if k not in processed_ids}
    print(f"Process {len(left_prompts)} prompts...")

    MAX_THREADS = 30

    with concurrent.futures.ThreadPoolExecutor(max_workers=MAX_THREADS) as executor:
        futures = [executor.submit(process_prompt, prompt_id, prompt_data, config)
                   for prompt_id, prompt_data in left_prompts.items()]
        for future in concurrent.futures.as_completed(futures):
            try:
                result = future.result()
                if result:
                    full_record, score_record = result
                    print(full_record)
                    save_results(full_record, config["result_files"]["full"], config)
                    save_results(score_record, config["result_files"]["scores"], config)

            except Exception as e:
                print(f"An error occurred: {e}")