File size: 14,935 Bytes
e6af450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# Copyright (c) 2024 The HuggingFace Inc. team.
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
#
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
#
# Original file was released under Apache-2.0, with the full license text
# available at https://github.com/huggingface/transformers/blob/main/LICENSE.
#
# This modified file is released under the same license.

import torch
from torch import nn

from transformers.activations import ACT2FN
from modeling.siglip.configuration_siglip import SiglipVisionConfig as _SiglipVisionConfig
from modeling.siglip.modeling_siglip import SiglipAttention, SiglipPreTrainedModel
from flash_attn import flash_attn_varlen_func


class SiglipVisionConfig(_SiglipVisionConfig):
    r"""
    This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
    Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    Example:

    ```python
    >>> from transformers import SiglipVisionConfig, SiglipVisionModel

    >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = SiglipVisionConfig()

    >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = SiglipVisionModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "siglip_vision_model"

    def __init__(
        self,
        hidden_size=768,
        intermediate_size=3072,
        num_hidden_layers=12,
        num_attention_heads=12,
        num_channels=3,
        image_size=224,
        patch_size=16,
        hidden_act="gelu_pytorch_tanh",
        layer_norm_eps=1e-6,
        attention_dropout=0.0,
        rope=True,
        **kwargs,
    ):
        super().__init__(
            hidden_size=hidden_size,
            intermediate_size=intermediate_size,
            num_hidden_layers=num_hidden_layers,
            num_attention_heads=num_attention_heads,
            num_channels=num_channels,
            image_size=image_size,
            patch_size=patch_size,
            hidden_act=hidden_act,
            layer_norm_eps=layer_norm_eps,
            attention_dropout=attention_dropout,
            **kwargs)
        
        self.rope = rope


class RotaryEmbedding2D(torch.nn.Module):
    def __init__(self, dim, max_h, max_w, base=10000):
        super().__init__()
        freq = torch.arange(0, dim, 2, dtype=torch.int64).float() / dim
        inv_freq = 1.0 / (base ** freq)

        grid_h = torch.arange(0, max_h)
        grid_h = grid_h.to(inv_freq.dtype)
        grid_h = grid_h[:, None].repeat(1, max_w)

        grid_w = torch.arange(0, max_w)
        grid_w = grid_w.to(inv_freq.dtype)
        grid_w = grid_w[None, :].repeat(max_h, 1)

        cos_h, sin_h = self._forward_one_side(grid_h, inv_freq)
        cos_w, sin_w = self._forward_one_side(grid_w, inv_freq)

        self.register_buffer("cos_h", cos_h)
        self.register_buffer("sin_h", sin_h)
        self.register_buffer("cos_w", cos_w)
        self.register_buffer("sin_w", sin_w)

    def _forward_one_side(self, grid, inv_freq):
        freqs = grid[..., None] * inv_freq[None, None, :]
        emb = torch.cat((freqs, freqs), dim=-1).flatten(0, 1)
        return emb.cos(), emb.sin()


def rotate_half(x):
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin):
    # unsqueeze due to the head dimension
    cos = cos.unsqueeze(1)
    sin = sin.unsqueeze(1)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


class SiglipVisionEmbeddings(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.patch_embedding = nn.Conv2d(
            in_channels=config.num_channels,
            out_channels=self.embed_dim,
            kernel_size=self.patch_size,
            stride=self.patch_size,
            padding="valid",
        )

        self.num_patches_per_side = self.image_size // self.patch_size
        self.num_patches = self.num_patches_per_side**2
        self.num_positions = self.num_patches
        if not config.rope:
            self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)

    def convert_conv2d_to_linear(self, config, meta=False):
        if meta:
            linear_patch_embedding = nn.Linear(
                config.num_channels * self.patch_size ** 2, self.embed_dim, bias=True, device='meta'
            )
        else:
            linear_patch_embedding = nn.Linear(
                config.num_channels * self.patch_size ** 2, self.embed_dim, bias=True
            )
        W = self.patch_embedding.weight.permute(0, 2, 3, 1).reshape(
            self.embed_dim, config.num_channels * self.patch_size ** 2
        )
        linear_patch_embedding.weight.data = W
        linear_patch_embedding.bias.data = self.patch_embedding.bias.data
        del self.patch_embedding
        self.patch_embedding = linear_patch_embedding

    def forward(
        self, 
        packed_pixel_values: torch.FloatTensor, 
        packed_flattened_position_ids: torch.LongTensor
    ) -> torch.Tensor:

        patch_embeds = self.patch_embedding(packed_pixel_values)
        if not self.config.rope:
            embeddings = patch_embeds + self.position_embedding(packed_flattened_position_ids)
        else:
            embeddings = patch_embeds
        return embeddings


class SiglipFlashAttention2(SiglipAttention):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.IntTensor,
        max_seqlen: int,
        cos_h: torch.Tensor = None,
        sin_h: torch.Tensor = None,
        cos_w: torch.Tensor = None,
        sin_w: torch.Tensor = None,
        **kwargs,
    ) -> torch.Tensor:

        total_q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

        query_states = query_states.view(total_q_len, self.num_heads, self.head_dim)
        key_states = key_states.view(total_q_len, self.num_heads, self.head_dim)
        value_states = value_states.view(total_q_len, self.num_heads, self.head_dim)

        if self.config.rope:
            qh, qw = query_states[:, :, :self.head_dim // 2], query_states[:, :, self.head_dim // 2:] 
            kh, kw = key_states[:, :, :self.head_dim // 2], key_states[:, :, self.head_dim // 2:]
            qh, kh = apply_rotary_pos_emb(qh, kh, cos_h, sin_h)
            qw, kw = apply_rotary_pos_emb(qw, kw, cos_w, sin_w)
            query_states = torch.cat([qh, qw], dim=-1)
            key_states = torch.cat([kh, kw], dim=-1)

        attn_output = flash_attn_varlen_func(
            query_states.to(torch.bfloat16),
            key_states.to(torch.bfloat16),
            value_states.to(torch.bfloat16),
            cu_seqlens_q=cu_seqlens,
            cu_seqlens_k=cu_seqlens,
            max_seqlen_q=max_seqlen,
            max_seqlen_k=max_seqlen,
            causal=False,
        )

        attn_output = self.out_proj(attn_output.reshape(total_q_len, -1))
        return attn_output


class SiglipMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class SiglipEncoderLayer(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.self_attn = SiglipFlashAttention2(config)
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = SiglipMLP(config)
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.IntTensor,
        max_seqlen: int,
        cos_h: torch.Tensor = None,
        sin_h: torch.Tensor = None,
        cos_w: torch.Tensor = None,
        sin_w: torch.Tensor = None
    ) -> torch.Tensor:
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states = self.self_attn(
            hidden_states=hidden_states,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            cos_h=cos_h,
            sin_h=sin_h,
            cos_w=cos_w,
            sin_w=sin_w
        )
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        return hidden_states


class SiglipEncoder(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList(
            [SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)]
        )

    def forward(
        self,
        inputs_embeds: torch.Tensor,
        cu_seqlens: torch.IntTensor,
        max_seqlen: int,
        cos_h: torch.Tensor = None,
        sin_h: torch.Tensor = None,
        cos_w: torch.Tensor = None,
        sin_w: torch.Tensor = None,
    ) -> torch.Tensor:

        hidden_states = inputs_embeds
        for encoder_layer in self.layers:
            hidden_states = encoder_layer(hidden_states, cu_seqlens, max_seqlen,
                                          cos_h=cos_h, sin_h=sin_h, cos_w=cos_w, sin_w=sin_w)

        return hidden_states


class SiglipVisionTransformer(nn.Module):
    def __init__(self, config: SiglipVisionConfig):
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = SiglipVisionEmbeddings(config)
        if config.rope:
            max_size = config.image_size // config.patch_size
            dim_head = config.hidden_size // config.num_attention_heads
            self.rope = RotaryEmbedding2D(dim_head // 2, max_size, max_size)

        self.encoder = SiglipEncoder(config)
        self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

    def forward(
        self,
        packed_pixel_values: torch.Tensor,
        packed_flattened_position_ids: torch.LongTensor,
        cu_seqlens: torch.IntTensor,
        max_seqlen: int,
    ) -> torch.Tensor:
        hidden_states = self.embeddings(
            packed_pixel_values=packed_pixel_values, 
            packed_flattened_position_ids=packed_flattened_position_ids
        )

        extra_inputs = {}
        if self.config.rope:
            extra_inputs.update(
                cos_h = self.rope.cos_h[packed_flattened_position_ids],
                sin_h = self.rope.sin_h[packed_flattened_position_ids],
                cos_w = self.rope.cos_w[packed_flattened_position_ids],
                sin_w = self.rope.sin_w[packed_flattened_position_ids]
            )

        last_hidden_state = self.encoder(
            inputs_embeds=hidden_states, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, 
            **extra_inputs
        )
        last_hidden_state = self.post_layernorm(last_hidden_state)
        return last_hidden_state


class SiglipVisionModel(SiglipPreTrainedModel):
    config_class = SiglipVisionConfig
    main_input_name = "packed_pixel_values"

    def __init__(self, config: SiglipVisionConfig):
        super().__init__(config)

        self.vision_model = SiglipVisionTransformer(config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> nn.Module:
        return self.vision_model.embeddings.patch_embedding

    def forward(
        self,
        packed_pixel_values: torch.Tensor,
        packed_flattened_position_ids: torch.LongTensor,
        cu_seqlens: torch.IntTensor,
        max_seqlen: int,
    ) -> torch.Tensor:

        return self.vision_model(
            packed_pixel_values=packed_pixel_values,
            packed_flattened_position_ids=packed_flattened_position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
        )