File size: 21,541 Bytes
0e5cadd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae651c7
0e5cadd
09d9d95
3530257
0e5cadd
 
bb6e371
0e5cadd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae651c7
0e5cadd
 
 
 
 
bb6e371
0e5cadd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae651c7
09d9d95
0e5cadd
 
bb6e371
0e5cadd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12a0dd9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import spaces
import gradio as gr
import numpy as np
import os
import torch
import random
import subprocess
subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
from PIL import Image

from data.data_utils import add_special_tokens, pil_img2rgb
from data.transforms import ImageTransform
from inferencer import InterleaveInferencer
from modeling.autoencoder import load_ae
from modeling.bagel.qwen2_navit import NaiveCache
from modeling.bagel import (
    BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
    SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer

from huggingface_hub import snapshot_download

save_dir = "./model"
repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
cache_dir = save_dir + "/cache"

snapshot_download(cache_dir=cache_dir,
  local_dir=save_dir,
  repo_id=repo_id,
  local_dir_use_symlinks=False,
  resume_download=True,
  allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
)

# Model Initialization
model_path = "./model" #Download from https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT

llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
llm_config.qk_norm = True
llm_config.tie_word_embeddings = False
llm_config.layer_module = "Qwen2MoTDecoderLayer"

vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
vit_config.rope = False
vit_config.num_hidden_layers -= 1

vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))

config = BagelConfig(
    visual_gen=True,
    visual_und=True,
    llm_config=llm_config, 
    vit_config=vit_config,
    vae_config=vae_config,
    vit_max_num_patch_per_side=70,
    connector_act='gelu_pytorch_tanh',
    latent_patch_size=2,
    max_latent_size=64,
)

with init_empty_weights():
    language_model = Qwen2ForCausalLM(llm_config)
    vit_model      = SiglipVisionModel(vit_config)
    model          = Bagel(language_model, vit_model, config)
    model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)

tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)

vae_transform = ImageTransform(1024, 512, 16)
vit_transform = ImageTransform(980, 224, 14)

# Model Loading and Multi GPU Infernece Preparing
device_map = infer_auto_device_map(
    model,
    max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
    no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
)

same_device_modules = [
    'language_model.model.embed_tokens',
    'time_embedder',
    'latent_pos_embed',
    'vae2llm',
    'llm2vae',
    'connector',
    'vit_pos_embed'
]

if torch.cuda.device_count() == 1:
    first_device = device_map.get(same_device_modules[0], "cuda:0")
    for k in same_device_modules:
        if k in device_map:
            device_map[k] = first_device
        else:
            device_map[k] = "cuda:0"
else:
    first_device = device_map.get(same_device_modules[0])
    for k in same_device_modules:
        if k in device_map:
            device_map[k] = first_device
            
model = load_checkpoint_and_dispatch(
    model,
    checkpoint=os.path.join(model_path, "ema.safetensors"),
    device_map=device_map,
    offload_buffers=True,
    dtype=torch.bfloat16,
    force_hooks=True,
).eval()


# Inferencer Preparing 
inferencer = InterleaveInferencer(
    model=model,
    vae_model=vae_model,
    tokenizer=tokenizer,
    vae_transform=vae_transform,
    vit_transform=vit_transform,
    new_token_ids=new_token_ids,
)

def set_seed(seed):
    """Set random seeds for reproducibility"""
    if seed > 0:
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        if torch.cuda.is_available():
            torch.cuda.manual_seed(seed)
            torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
    return seed

# Text to Image function with thinking option and hyperparameters
@spaces.GPU(duration=90)
def text_to_image(prompt, show_thinking=False, cfg_text_scale=4.0, cfg_interval=0.4, 
                 timestep_shift=3.0, num_timesteps=50, 
                 cfg_renorm_min=1.0, cfg_renorm_type="global", 
                 max_think_token_n=1024, do_sample=False, text_temperature=0.3,
                 seed=0, image_ratio="1:1"):
    # Set seed for reproducibility
    set_seed(seed)

    if image_ratio == "1:1":
        image_shapes = (1024, 1024)
    elif image_ratio == "4:3":
        image_shapes = (768, 1024)
    elif image_ratio == "3:4":
        image_shapes = (1024, 768) 
    elif image_ratio == "16:9":
        image_shapes = (576, 1024)
    elif image_ratio == "9:16":
        image_shapes = (1024, 576) 
    
    # Set hyperparameters
    inference_hyper = dict(
        max_think_token_n=max_think_token_n if show_thinking else 1024,
        do_sample=do_sample if show_thinking else False,
        temperature=text_temperature if show_thinking else 0.3,
        cfg_text_scale=cfg_text_scale,
        cfg_interval=[cfg_interval, 1.0],  # End fixed at 1.0
        timestep_shift=timestep_shift,
        num_timesteps=num_timesteps,
        cfg_renorm_min=cfg_renorm_min,
        cfg_renorm_type=cfg_renorm_type,
        image_shapes=image_shapes,
    )

    result = {"text": "", "image": None}
    # Call inferencer with or without think parameter based on user choice
    for i in inferencer(text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
        print(type(i))
        if type(i) == str:
            result["text"] += i
        else:
            result["image"] = i

        yield result["image"], result.get("text", None)


# Image Understanding function with thinking option and hyperparameters
@spaces.GPU(duration=90)
def image_understanding(image: Image.Image, prompt: str, show_thinking=False, 
                        do_sample=False, text_temperature=0.3, max_new_tokens=512):
    if image is None:
        return "Please upload an image."

    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    image = pil_img2rgb(image)
    
    # Set hyperparameters
    inference_hyper = dict(
        do_sample=do_sample,
        temperature=text_temperature,
        max_think_token_n=max_new_tokens, # Set max_length
    )
    
    result = {"text": "", "image": None}
    # Use show_thinking parameter to control thinking process
    for i in inferencer(image=image, text=prompt, think=show_thinking, 
                        understanding_output=True, **inference_hyper):
        if type(i) == str:
            result["text"] += i
        else:
            result["image"] = i
        yield result["text"]


# Image Editing function with thinking option and hyperparameters
@spaces.GPU(duration=90)
def edit_image(image: Image.Image, prompt: str, show_thinking=False, cfg_text_scale=4.0, 
              cfg_img_scale=2.0, cfg_interval=0.0, 
              timestep_shift=3.0, num_timesteps=50, cfg_renorm_min=1.0, 
              cfg_renorm_type="text_channel", max_think_token_n=1024, 
              do_sample=False, text_temperature=0.3, seed=0):
    # Set seed for reproducibility
    set_seed(seed)
    
    if image is None:
        return "Please upload an image.", ""

    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    image = pil_img2rgb(image)
    
    # Set hyperparameters
    inference_hyper = dict(
        max_think_token_n=max_think_token_n if show_thinking else 1024,
        do_sample=do_sample if show_thinking else False,
        temperature=text_temperature if show_thinking else 0.3,
        cfg_text_scale=cfg_text_scale,
        cfg_img_scale=cfg_img_scale,
        cfg_interval=[cfg_interval, 1.0],  # End fixed at 1.0
        timestep_shift=timestep_shift,
        num_timesteps=num_timesteps,
        cfg_renorm_min=cfg_renorm_min,
        cfg_renorm_type=cfg_renorm_type,
    )
    
    # Include thinking parameter based on user choice
    result = {"text": "", "image": None}
    for i in inferencer(image=image, text=prompt, think=show_thinking, understanding_output=False, **inference_hyper):
        if type(i) == str:
            result["text"] += i
        else:
            result["image"] = i

        yield result["image"], result.get("text", "")

# Helper function to load example images
def load_example_image(image_path):
    try:
        return Image.open(image_path)
    except Exception as e:
        print(f"Error loading example image: {e}")
        return None


# Gradio UI 
with gr.Blocks() as demo:
    gr.Markdown("""
<div>
  <img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
</div>
""")

    with gr.Tab("📝 Text to Image"):
        txt_input = gr.Textbox(
            label="Prompt", 
            value="A female cosplayer portraying an ethereal fairy or elf, wearing a flowing dress made of delicate fabrics in soft, mystical colors like emerald green and silver. She has pointed ears, a gentle, enchanting expression, and her outfit is adorned with sparkling jewels and intricate patterns. The background is a magical forest with glowing plants, mystical creatures, and a serene atmosphere."
        )
        
        with gr.Row():
            show_thinking = gr.Checkbox(label="Thinking", value=False)
        
        # Add hyperparameter controls in an accordion
        with gr.Accordion("Inference Hyperparameters", open=False):
            # 参数一排两个布局
            with gr.Group():
                with gr.Row():
                    seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, 
                                   label="Seed", info="0 for random seed, positive for reproducible results")
                    image_ratio = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"], 
                                                value="1:1", label="Image Ratio", 
                                                info="The longer size is fixed to 1024")
                    
                with gr.Row():
                    cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
                                             label="CFG Text Scale", info="Controls how strongly the model follows the text prompt (4.0-8.0)")
                    cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1, 
                                           label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
                
                with gr.Row():
                    cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"], 
                                                value="global", label="CFG Renorm Type", 
                                                info="If the genrated image is blurry, use 'global'")
                    cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
                                             label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
                
                with gr.Row():
                    num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
                                            label="Timesteps", info="Total denoising steps")
                    timestep_shift = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, interactive=True,
                                             label="Timestep Shift", info="Higher values for layout, lower for details")
                
                # Thinking parameters in a single row
                thinking_params = gr.Group(visible=False)
                with thinking_params:
                    with gr.Row():
                        do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
                        max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
                                                    label="Max Think Tokens", info="Maximum number of tokens for thinking")
                        text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
                                                  label="Temperature", info="Controls randomness in text generation")
        
        thinking_output = gr.Textbox(label="Thinking Process", visible=False)
        img_output = gr.Image(label="Generated Image")
        gen_btn = gr.Button("Generate")
        
        # Dynamically show/hide thinking process box and parameters
        def update_thinking_visibility(show):
            return gr.update(visible=show), gr.update(visible=show)
        
        show_thinking.change(
            fn=update_thinking_visibility,
            inputs=[show_thinking],
            outputs=[thinking_output, thinking_params]
        )
        
        gen_btn.click(
            fn=text_to_image,
            inputs=[
                txt_input, show_thinking, cfg_text_scale, 
                cfg_interval, timestep_shift, 
                num_timesteps, cfg_renorm_min, cfg_renorm_type,
                max_think_token_n, do_sample, text_temperature, seed, image_ratio
            ],
            outputs=[img_output, thinking_output]
        )

    with gr.Tab("🖌️ Image Edit"):
        with gr.Row():
            with gr.Column(scale=1):
                edit_image_input = gr.Image(label="Input Image", value=load_example_image('test_images/women.jpg'))
                edit_prompt = gr.Textbox(
                    label="Prompt",
                    value="She boards a modern subway, quietly reading a folded newspaper, wearing the same clothes."
                )
            
            with gr.Column(scale=1):
                edit_image_output = gr.Image(label="Result")
                edit_thinking_output = gr.Textbox(label="Thinking Process", visible=False)
        
        with gr.Row():
            edit_show_thinking = gr.Checkbox(label="Thinking", value=False)
        
        # Add hyperparameter controls in an accordion
        with gr.Accordion("Inference Hyperparameters", open=False):
            with gr.Group():
                with gr.Row():
                    edit_seed = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, interactive=True,
                                        label="Seed", info="0 for random seed, positive for reproducible results")
                    edit_cfg_text_scale = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, interactive=True,
                                                  label="CFG Text Scale", info="Controls how strongly the model follows the text prompt")
                
                with gr.Row():
                    edit_cfg_img_scale = gr.Slider(minimum=1.0, maximum=4.0, value=2.0, step=0.1, interactive=True,
                                                 label="CFG Image Scale", info="Controls how much the model preserves input image details")
                    edit_cfg_interval = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
                                                label="CFG Interval", info="Start of CFG application interval (end is fixed at 1.0)")
                    
                with gr.Row():
                    edit_cfg_renorm_type = gr.Dropdown(choices=["global", "local", "text_channel"], 
                                                     value="text_channel", label="CFG Renorm Type", 
                                                     info="If the genrated image is blurry, use 'global")
                    edit_cfg_renorm_min = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, interactive=True,
                                                  label="CFG Renorm Min", info="1.0 disables CFG-Renorm")
                
                with gr.Row():
                    edit_num_timesteps = gr.Slider(minimum=10, maximum=100, value=50, step=5, interactive=True,
                                                 label="Timesteps", info="Total denoising steps")
                    edit_timestep_shift = gr.Slider(minimum=1.0, maximum=10.0, value=3.0, step=0.5, interactive=True,
                                                  label="Timestep Shift", info="Higher values for layout, lower for details")
                
                
                # Thinking parameters in a single row
                edit_thinking_params = gr.Group(visible=False)
                with edit_thinking_params:
                    with gr.Row():
                        edit_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
                        edit_max_think_token_n = gr.Slider(minimum=64, maximum=4006, value=1024, step=64, interactive=True,
                                                         label="Max Think Tokens", info="Maximum number of tokens for thinking")
                        edit_text_temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, interactive=True,
                                                        label="Temperature", info="Controls randomness in text generation")
        
        edit_btn = gr.Button("Submit")
        
        # Dynamically show/hide thinking process box for editing
        def update_edit_thinking_visibility(show):
            return gr.update(visible=show), gr.update(visible=show)
        
        edit_show_thinking.change(
            fn=update_edit_thinking_visibility,
            inputs=[edit_show_thinking],
            outputs=[edit_thinking_output, edit_thinking_params]
        )
        
        edit_btn.click(
            fn=edit_image,
            inputs=[
                edit_image_input, edit_prompt, edit_show_thinking, 
                edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval,
                edit_timestep_shift, edit_num_timesteps, 
                edit_cfg_renorm_min, edit_cfg_renorm_type,
                edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed
            ],
            outputs=[edit_image_output, edit_thinking_output]
        )

    with gr.Tab("🖼️ Image Understanding"):
        with gr.Row():
            with gr.Column(scale=1):
                img_input = gr.Image(label="Input Image", value=load_example_image('test_images/meme.jpg'))
                understand_prompt = gr.Textbox(
                    label="Prompt", 
                    value="Can someone explain what's funny about this meme??"
                )
            
            with gr.Column(scale=1):
                txt_output = gr.Textbox(label="Result", lines=20)
        
        with gr.Row():
            understand_show_thinking = gr.Checkbox(label="Thinking", value=False)
        
        # Add hyperparameter controls in an accordion
        with gr.Accordion("Inference Hyperparameters", open=False):
            with gr.Row():
                understand_do_sample = gr.Checkbox(label="Sampling", value=False, info="Enable sampling for text generation")
                understand_text_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, interactive=True,
                                                     label="Temperature", info="Controls randomness in text generation (0=deterministic, 1=creative)")
                understand_max_new_tokens = gr.Slider(minimum=64, maximum=4096, value=512, step=64, interactive=True,
                                                   label="Max New Tokens", info="Maximum length of generated text, including potential thinking")
        
        img_understand_btn = gr.Button("Submit")
        
        img_understand_btn.click(
            fn=image_understanding,
            inputs=[
                img_input, understand_prompt, understand_show_thinking,
                understand_do_sample, understand_text_temperature, understand_max_new_tokens
            ],
            outputs=txt_output
        )

    gr.Markdown("""
<div style="display: flex; justify-content: flex-start; flex-wrap: wrap; gap: 10px;">
  <a href="https://bagel-ai.org/">
    <img
      src="https://img.shields.io/badge/BAGEL-Website-0A66C2?logo=safari&logoColor=white"
      alt="BAGEL Website"
    />
  </a>
  <a href="https://arxiv.org/abs/2505.14683">
    <img
      src="https://img.shields.io/badge/BAGEL-Paper-red?logo=arxiv&logoColor=red"
      alt="BAGEL Paper on arXiv"
    />
  </a>
  <a href="https://huggingface.co/ByteDance-Seed/BAGEL-7B-MoT">
    <img 
        src="https://img.shields.io/badge/BAGEL-Hugging%20Face-orange?logo=huggingface&logoColor=yellow" 
        alt="BAGEL on Hugging Face"
    />
  </a>
  <a href="https://demo.bagel-ai.org/">
    <img
      src="https://img.shields.io/badge/BAGEL-Demo-blue?logo=googleplay&logoColor=blue"
      alt="BAGEL Demo"
    />
  </a>
  <a href="https://discord.gg/Z836xxzy">
    <img
      src="https://img.shields.io/badge/BAGEL-Discord-5865F2?logo=discord&logoColor=purple"
      alt="BAGEL Discord"
    />
  </a>
  <a href="mailto:[email protected]">
    <img
      src="https://img.shields.io/badge/BAGEL-Email-D14836?logo=gmail&logoColor=red"
      alt="BAGEL Email"
    />
  </a>
</div>
""")

demo.launch()