File size: 6,530 Bytes
e6af450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0


import math
import random
from PIL import Image

import torch
from torch.nn.attention.flex_attention import or_masks, and_masks


def create_sparse_mask(document_lens, split_lens, attn_modes, device):
    def causal_mask(b, h, q_idx, kv_idx):
        return q_idx >= kv_idx

    def full_and_noise_mask(b, h, q_idx, kv_idx):
        return (full_and_noise_seq_id[q_idx] == full_and_noise_seq_id[kv_idx]) & (full_and_noise_seq_id[q_idx] >= 0)

    def remove_noise_mask(b, h, q_idx, kv_idx):
        return (~((noise_seq_id[kv_idx] >= 0) & (noise_seq_id[q_idx] != noise_seq_id[kv_idx])))

    def sample_mask(b, h, q_idx, kv_idx):
        return document_id[q_idx] == document_id[kv_idx]

    full_and_noise_tmp = []
    noise_tmp = []

    for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
        value = i if model in ['full', 'noise'] else -1
        full_and_noise_tmp.extend([value] * length)
        value_noise = i if model == 'noise' else -1
        noise_tmp.extend([value_noise] * length)

    full_and_noise_seq_id = torch.Tensor(full_and_noise_tmp).to(device)
    noise_seq_id = torch.Tensor(noise_tmp).to(device)

    document_id = torch.cat([torch.full((l,), i) for i, l in enumerate(document_lens, start=1)]).to(device)

    return and_masks(or_masks(causal_mask, full_and_noise_mask), remove_noise_mask, sample_mask)


def patchify(image, patch_size):
    p = patch_size
    c, h, w = image.shape
    assert h % p == 0 and w % p == 0
    image = image.reshape(c, h // p, p, w // p, p)
    image = torch.einsum("chpwq->hwpqc", image)
    image = image.reshape(-1, p**2 * c)
    return image


def get_flattened_position_ids_extrapolate(img_h, img_w, patch_size, max_num_patches_per_side):
    num_patches_h, num_patches_w = img_h // patch_size, img_w // patch_size
    coords_h = torch.arange(0, num_patches_h)
    coords_w = torch.arange(0, num_patches_w)
    pos_ids = (coords_h[:, None] * max_num_patches_per_side + coords_w).flatten()
    return pos_ids


def get_flattened_position_ids_interpolate(img_h, img_w, patch_size, max_num_patches_per_side):
    num_patches_h, num_patches_w = img_h // patch_size, img_w // patch_size
    boundaries = torch.arange(1 / max_num_patches_per_side, 1.0, 1 / max_num_patches_per_side)
    fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / num_patches_h)
    fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / num_patches_w)
    bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
    bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
    pos_ids = (bucket_coords_h[:, None] * max_num_patches_per_side + bucket_coords_w).flatten()
    return pos_ids


def prepare_attention_mask_per_sample(split_lens, attn_modes, device="cpu"):
    """
    nested_split_lens: A list of N lists of ints. Each int indicates the length of a split within 
        a sample, where each sample contains multiple splits with different attn modes.
    nested_attn_modes: whether to use full attn in each split.
    """
    sample_len = sum(split_lens)
    attention_mask = torch.zeros((sample_len, sample_len), dtype=torch.bool, device=device)

    csum = 0
    for s, attn_mode in zip(split_lens, attn_modes):
        assert attn_mode in ['causal', 'full', 'noise']
        if attn_mode == "causal":
            attention_mask[csum:csum + s, csum:csum + s] = torch.ones((s, s), device=device).tril()
            attention_mask[csum:csum + s, :csum] = 1
        else:
            attention_mask[csum:csum + s, csum:csum + s] = torch.ones((s, s))
            attention_mask[csum:csum + s, :csum] = 1
        csum += s

    csum = 0
    for s, attn_mode in zip(split_lens, attn_modes):
        if attn_mode == "noise":
            attention_mask[:, csum : csum + s] = torch.zeros((sample_len, s))
            attention_mask[csum : csum + s, csum : csum + s] = torch.ones((s, s))
        csum += s

    attention_mask = torch.zeros_like(attention_mask, dtype=torch.float).masked_fill_(
        ~attention_mask, float("-inf")
    )

    return attention_mask


def split_integer_exp_decay(S, ng_sample_decay=1.0):
    if ng_sample_decay == 1.0:
        N = random.randint(1, S)
    else:
        base = (1 - ng_sample_decay) / (1 - math.pow(ng_sample_decay, S))
        p = [base * math.pow(ng_sample_decay, i) for i in range(S)]
        N = random.choices(list(range(1, S + 1)), p, k=1)[0]
    cumsum = [0] + sorted(random.sample(range(1, S), N - 1)) + [S]
    result = [cumsum[i+1] - cumsum[i] for i in range(len(cumsum) - 1)]
    return result, cumsum


def pil_img2rgb(image):
    if image.mode == "RGBA" or image.info.get("transparency", None) is not None:
        image = image.convert("RGBA")
        white = Image.new(mode="RGB", size=image.size, color=(255, 255, 255))
        white.paste(image, mask=image.split()[3])
        image = white
    else:
        image = image.convert("RGB")

    return image


def add_special_tokens(tokenizer):
    all_special_tokens = []
    for k, v in tokenizer.special_tokens_map.items():
        if isinstance(v, str):
            all_special_tokens.append(v)
        elif isinstance(v, list):
            all_special_tokens += v

    new_tokens = []

    if '<|im_start|>' not in all_special_tokens:
        new_tokens.append('<|im_start|>')

    if '<|im_end|>' not in all_special_tokens:
        new_tokens.append('<|im_end|>')

    if '<|vision_start|>' not in all_special_tokens:
        new_tokens.append('<|vision_start|>')

    if '<|vision_end|>' not in all_special_tokens:
        new_tokens.append('<|vision_end|>')

    num_new_tokens = tokenizer.add_tokens(new_tokens)
    bos_token_id = tokenizer.convert_tokens_to_ids('<|im_start|>')
    eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>')
    start_of_image = tokenizer.convert_tokens_to_ids('<|vision_start|>')
    end_of_image = tokenizer.convert_tokens_to_ids('<|vision_end|>')

    new_token_ids = dict(
        bos_token_id=bos_token_id, 
        eos_token_id=eos_token_id, 
        start_of_image=start_of_image, 
        end_of_image=end_of_image, 
    )

    return tokenizer, new_token_ids, num_new_tokens


def len2weight(x, loss_reduction='square'):
    if x == 0:
        return x
    if loss_reduction == 'token':
        return 1
    if loss_reduction == 'sample':
        return 1 / x
    if loss_reduction == 'square':
        return 1 / (x ** 0.5)
    raise NotImplementedError(loss_reduction)