Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,530 Bytes
e6af450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import math
import random
from PIL import Image
import torch
from torch.nn.attention.flex_attention import or_masks, and_masks
def create_sparse_mask(document_lens, split_lens, attn_modes, device):
def causal_mask(b, h, q_idx, kv_idx):
return q_idx >= kv_idx
def full_and_noise_mask(b, h, q_idx, kv_idx):
return (full_and_noise_seq_id[q_idx] == full_and_noise_seq_id[kv_idx]) & (full_and_noise_seq_id[q_idx] >= 0)
def remove_noise_mask(b, h, q_idx, kv_idx):
return (~((noise_seq_id[kv_idx] >= 0) & (noise_seq_id[q_idx] != noise_seq_id[kv_idx])))
def sample_mask(b, h, q_idx, kv_idx):
return document_id[q_idx] == document_id[kv_idx]
full_and_noise_tmp = []
noise_tmp = []
for i, (length, model) in enumerate(zip(split_lens, attn_modes)):
value = i if model in ['full', 'noise'] else -1
full_and_noise_tmp.extend([value] * length)
value_noise = i if model == 'noise' else -1
noise_tmp.extend([value_noise] * length)
full_and_noise_seq_id = torch.Tensor(full_and_noise_tmp).to(device)
noise_seq_id = torch.Tensor(noise_tmp).to(device)
document_id = torch.cat([torch.full((l,), i) for i, l in enumerate(document_lens, start=1)]).to(device)
return and_masks(or_masks(causal_mask, full_and_noise_mask), remove_noise_mask, sample_mask)
def patchify(image, patch_size):
p = patch_size
c, h, w = image.shape
assert h % p == 0 and w % p == 0
image = image.reshape(c, h // p, p, w // p, p)
image = torch.einsum("chpwq->hwpqc", image)
image = image.reshape(-1, p**2 * c)
return image
def get_flattened_position_ids_extrapolate(img_h, img_w, patch_size, max_num_patches_per_side):
num_patches_h, num_patches_w = img_h // patch_size, img_w // patch_size
coords_h = torch.arange(0, num_patches_h)
coords_w = torch.arange(0, num_patches_w)
pos_ids = (coords_h[:, None] * max_num_patches_per_side + coords_w).flatten()
return pos_ids
def get_flattened_position_ids_interpolate(img_h, img_w, patch_size, max_num_patches_per_side):
num_patches_h, num_patches_w = img_h // patch_size, img_w // patch_size
boundaries = torch.arange(1 / max_num_patches_per_side, 1.0, 1 / max_num_patches_per_side)
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / num_patches_h)
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / num_patches_w)
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
pos_ids = (bucket_coords_h[:, None] * max_num_patches_per_side + bucket_coords_w).flatten()
return pos_ids
def prepare_attention_mask_per_sample(split_lens, attn_modes, device="cpu"):
"""
nested_split_lens: A list of N lists of ints. Each int indicates the length of a split within
a sample, where each sample contains multiple splits with different attn modes.
nested_attn_modes: whether to use full attn in each split.
"""
sample_len = sum(split_lens)
attention_mask = torch.zeros((sample_len, sample_len), dtype=torch.bool, device=device)
csum = 0
for s, attn_mode in zip(split_lens, attn_modes):
assert attn_mode in ['causal', 'full', 'noise']
if attn_mode == "causal":
attention_mask[csum:csum + s, csum:csum + s] = torch.ones((s, s), device=device).tril()
attention_mask[csum:csum + s, :csum] = 1
else:
attention_mask[csum:csum + s, csum:csum + s] = torch.ones((s, s))
attention_mask[csum:csum + s, :csum] = 1
csum += s
csum = 0
for s, attn_mode in zip(split_lens, attn_modes):
if attn_mode == "noise":
attention_mask[:, csum : csum + s] = torch.zeros((sample_len, s))
attention_mask[csum : csum + s, csum : csum + s] = torch.ones((s, s))
csum += s
attention_mask = torch.zeros_like(attention_mask, dtype=torch.float).masked_fill_(
~attention_mask, float("-inf")
)
return attention_mask
def split_integer_exp_decay(S, ng_sample_decay=1.0):
if ng_sample_decay == 1.0:
N = random.randint(1, S)
else:
base = (1 - ng_sample_decay) / (1 - math.pow(ng_sample_decay, S))
p = [base * math.pow(ng_sample_decay, i) for i in range(S)]
N = random.choices(list(range(1, S + 1)), p, k=1)[0]
cumsum = [0] + sorted(random.sample(range(1, S), N - 1)) + [S]
result = [cumsum[i+1] - cumsum[i] for i in range(len(cumsum) - 1)]
return result, cumsum
def pil_img2rgb(image):
if image.mode == "RGBA" or image.info.get("transparency", None) is not None:
image = image.convert("RGBA")
white = Image.new(mode="RGB", size=image.size, color=(255, 255, 255))
white.paste(image, mask=image.split()[3])
image = white
else:
image = image.convert("RGB")
return image
def add_special_tokens(tokenizer):
all_special_tokens = []
for k, v in tokenizer.special_tokens_map.items():
if isinstance(v, str):
all_special_tokens.append(v)
elif isinstance(v, list):
all_special_tokens += v
new_tokens = []
if '<|im_start|>' not in all_special_tokens:
new_tokens.append('<|im_start|>')
if '<|im_end|>' not in all_special_tokens:
new_tokens.append('<|im_end|>')
if '<|vision_start|>' not in all_special_tokens:
new_tokens.append('<|vision_start|>')
if '<|vision_end|>' not in all_special_tokens:
new_tokens.append('<|vision_end|>')
num_new_tokens = tokenizer.add_tokens(new_tokens)
bos_token_id = tokenizer.convert_tokens_to_ids('<|im_start|>')
eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>')
start_of_image = tokenizer.convert_tokens_to_ids('<|vision_start|>')
end_of_image = tokenizer.convert_tokens_to_ids('<|vision_end|>')
new_token_ids = dict(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
start_of_image=start_of_image,
end_of_image=end_of_image,
)
return tokenizer, new_token_ids, num_new_tokens
def len2weight(x, loss_reduction='square'):
if x == 0:
return x
if loss_reduction == 'token':
return 1
if loss_reduction == 'sample':
return 1 / x
if loss_reduction == 'square':
return 1 / (x ** 0.5)
raise NotImplementedError(loss_reduction)
|