File size: 8,703 Bytes
e6af450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0

import pyarrow.parquet as pq

from ..distributed_iterable_dataset import DistributedIterableDataset
from ..parquet_utils import get_parquet_data_paths, init_arrow_pf_fs


class InterleavedBaseIterableDataset(DistributedIterableDataset):

    def _init_data(self):
        data = {
            'sequence_plan': [],
            'text_ids_list': [],
            'image_tensor_list': [],
            'num_tokens': 0,
        }
        return data

    def _add_text(self, data, text, need_loss, enable_cfg=True):
        text_ids = self.tokenizer.encode(text)
        data['num_tokens'] += len(text_ids)
        data['text_ids_list'].append(text_ids)
        data['sequence_plan'].append(
            {
                'type': 'text',
                'enable_cfg': int(enable_cfg),
                'loss': int(need_loss),
                'special_token_loss': 0,
                'special_token_label': None,
            }
        )
        return data

    def _add_image(self, data, image, need_loss, need_vae, need_vit, enable_cfg=True):
        assert need_loss or need_vae or need_vit

        if need_loss:
            data['sequence_plan'].append(
                {
                    'type': 'vae_image', 
                    'enable_cfg': 0, 
                    'loss': 1, 
                    'special_token_loss': 0,
                    'special_token_label': None,
                }
            )

            image_tensor = self.transform(image)
            height, width = image_tensor.shape[1:]
            data['num_tokens'] += width * height // self.transform.stride ** 2
            data['image_tensor_list'].append(image_tensor)

        if need_vae:
            data['sequence_plan'].append(
                {
                    'type': 'vae_image', 
                    'enable_cfg': int(enable_cfg), 
                    'loss': 0, 
                    'special_token_loss': 0,
                    'special_token_label': None,
                }
            )

            image_tensor = self.transform(image)
            height, width = image_tensor.shape[1:]
            data['num_tokens'] += width * height // self.transform.stride ** 2
            data['image_tensor_list'].append(image_tensor.clone())

        if need_vit:
            data['sequence_plan'].append(
                {
                    'type': 'vit_image',
                    'enable_cfg': int(enable_cfg), 
                    'loss': 0,
                    'special_token_loss': 0,
                    'special_token_label': None,
                },
            )
            vit_image_tensor = self.vit_transform(image)
            height, width = vit_image_tensor.shape[1:]
            data['num_tokens'] += width * height // self.vit_transform.stride ** 2
            data['image_tensor_list'].append(vit_image_tensor)

        return data

    def _add_video(self, data, frames, frame_indexes, need_loss, need_vae, enable_cfg=True):
        assert int(need_loss) + int(need_vae) == 1

        if need_loss:
            for idx, (image, frame_idx) in enumerate(zip(frames, frame_indexes)):
                current_sequence_plan = {
                    'type': 'vae_image', 
                    'enable_cfg': 0, 
                    'loss': 1, 
                    'special_token_loss': 0,
                    'special_token_label': None,
                    'split_start': idx == 0,
                    'split_end': idx == len(frames) - 1,
                }
                if idx < len(frame_indexes) - 1:
                    current_sequence_plan['frame_delta'] = frame_indexes[idx + 1] - frame_idx
                data['sequence_plan'].append(current_sequence_plan)
                image_tensor = self.transform(image)
                height, width = image_tensor.shape[1:]
                data['image_tensor_list'].append(image_tensor)
                data['num_tokens'] += width * height // self.transform.stride ** 2

        elif need_vae:
            for idx, (image, frame_idx) in enumerate(zip(frames, frame_indexes)):
                current_sequence_plan = {
                    'type': 'vae_image', 
                    'enable_cfg': int(enable_cfg), 
                    'loss': 0, 
                    'special_token_loss': 0,
                    'special_token_label': None,
                    'split_start': idx == 0,
                    'split_end': idx == len(frames) - 1,
                }
                if idx < len(frame_indexes) - 1:
                    current_sequence_plan['frame_delta'] = frame_indexes[idx + 1] - frame_idx
                data['sequence_plan'].append(current_sequence_plan)
                image_tensor = self.transform(image)
                height, width = image_tensor.shape[1:]
                data['image_tensor_list'].append(image_tensor)
                data['num_tokens'] += width * height // self.transform.stride ** 2

        return data


class ParquetStandardIterableDataset(DistributedIterableDataset):

    def __init__(
        self, dataset_name, transform, tokenizer, vit_transform, 
        data_dir_list, num_used_data, parquet_info,
        local_rank=0, world_size=1, num_workers=8, data_status=None,
    ):
        """
        data_dir_list: list of data directories contains parquet files
        num_used_data: list of number of sampled data paths for each data directory
        vit_transform: input transform for vit model.
        """
        super().__init__(dataset_name, local_rank, world_size, num_workers)
        self.transform = transform
        self.vit_transform = vit_transform
        self.tokenizer = tokenizer
        self.data_status = data_status
        self.data_paths = self.get_data_paths(data_dir_list, num_used_data, parquet_info)
        self.set_epoch()

    def get_data_paths(self, data_dir_list, num_used_data, parquet_info):
        row_groups = []
        for data_dir, num_data_path in zip(data_dir_list, num_used_data):
            data_paths = get_parquet_data_paths([data_dir], [num_data_path])
            for data_path in data_paths:
                if data_path in parquet_info.keys():
                    num_row_groups = parquet_info[data_path]['num_row_groups']
                    for rg_idx in range(num_row_groups):
                        row_groups.append((data_path, rg_idx))
        return row_groups

    def parse_row(self, row):
        raise NotImplementedError

    def __iter__(self):
        file_paths_per_worker, worker_id = self.get_data_paths_per_worker()
        if self.data_status is not None:
            global_row_group_start_id = self.data_status[worker_id][0]
            row_start_id = self.data_status[worker_id][1] + 1
        else:
            global_row_group_start_id = 0
            row_start_id = 0

        print(
            f"rank-{self.local_rank} worker-{worker_id} dataset-{self.dataset_name}: "
            f"resuming data at global_rg#{global_row_group_start_id}, row#{row_start_id}"
        )

        while True:
            file_paths_per_worker_ = file_paths_per_worker[global_row_group_start_id:]
            for global_row_group_idx, (parquet_file_path, row_group_id) in enumerate(
                file_paths_per_worker_, start=global_row_group_start_id
            ):
                fs = init_arrow_pf_fs(parquet_file_path)
                with fs.open_input_file(parquet_file_path) as f:
                    try:
                        fr = pq.ParquetFile(f)
                        df = fr.read_row_group(row_group_id).to_pandas()
                        df = df.iloc[row_start_id:]
                    except Exception as e:
                        print(f'Error {e} in rg#{row_group_id}, {parquet_file_path}')
                        continue

                    for row_idx, row in df.iterrows():
                        try:
                            data = self.parse_row(row)
                            if len(data) == 0:
                                continue
                            data['data_indexes'] = {
                                "data_indexes": [global_row_group_idx, row_idx],
                                "worker_id": worker_id,
                                "dataset_name": self.dataset_name,
                            }
                        except Exception as e:
                            print(f'Error {e} in rg#{row_group_id}, {parquet_file_path}')
                            continue
                        yield data

                    row_start_id = 0
            global_row_group_start_id = 0
            print(f"{self.dataset_name} repeat in rank-{self.local_rank} worker-{worker_id}")