Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,703 Bytes
e6af450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import pyarrow.parquet as pq
from ..distributed_iterable_dataset import DistributedIterableDataset
from ..parquet_utils import get_parquet_data_paths, init_arrow_pf_fs
class InterleavedBaseIterableDataset(DistributedIterableDataset):
def _init_data(self):
data = {
'sequence_plan': [],
'text_ids_list': [],
'image_tensor_list': [],
'num_tokens': 0,
}
return data
def _add_text(self, data, text, need_loss, enable_cfg=True):
text_ids = self.tokenizer.encode(text)
data['num_tokens'] += len(text_ids)
data['text_ids_list'].append(text_ids)
data['sequence_plan'].append(
{
'type': 'text',
'enable_cfg': int(enable_cfg),
'loss': int(need_loss),
'special_token_loss': 0,
'special_token_label': None,
}
)
return data
def _add_image(self, data, image, need_loss, need_vae, need_vit, enable_cfg=True):
assert need_loss or need_vae or need_vit
if need_loss:
data['sequence_plan'].append(
{
'type': 'vae_image',
'enable_cfg': 0,
'loss': 1,
'special_token_loss': 0,
'special_token_label': None,
}
)
image_tensor = self.transform(image)
height, width = image_tensor.shape[1:]
data['num_tokens'] += width * height // self.transform.stride ** 2
data['image_tensor_list'].append(image_tensor)
if need_vae:
data['sequence_plan'].append(
{
'type': 'vae_image',
'enable_cfg': int(enable_cfg),
'loss': 0,
'special_token_loss': 0,
'special_token_label': None,
}
)
image_tensor = self.transform(image)
height, width = image_tensor.shape[1:]
data['num_tokens'] += width * height // self.transform.stride ** 2
data['image_tensor_list'].append(image_tensor.clone())
if need_vit:
data['sequence_plan'].append(
{
'type': 'vit_image',
'enable_cfg': int(enable_cfg),
'loss': 0,
'special_token_loss': 0,
'special_token_label': None,
},
)
vit_image_tensor = self.vit_transform(image)
height, width = vit_image_tensor.shape[1:]
data['num_tokens'] += width * height // self.vit_transform.stride ** 2
data['image_tensor_list'].append(vit_image_tensor)
return data
def _add_video(self, data, frames, frame_indexes, need_loss, need_vae, enable_cfg=True):
assert int(need_loss) + int(need_vae) == 1
if need_loss:
for idx, (image, frame_idx) in enumerate(zip(frames, frame_indexes)):
current_sequence_plan = {
'type': 'vae_image',
'enable_cfg': 0,
'loss': 1,
'special_token_loss': 0,
'special_token_label': None,
'split_start': idx == 0,
'split_end': idx == len(frames) - 1,
}
if idx < len(frame_indexes) - 1:
current_sequence_plan['frame_delta'] = frame_indexes[idx + 1] - frame_idx
data['sequence_plan'].append(current_sequence_plan)
image_tensor = self.transform(image)
height, width = image_tensor.shape[1:]
data['image_tensor_list'].append(image_tensor)
data['num_tokens'] += width * height // self.transform.stride ** 2
elif need_vae:
for idx, (image, frame_idx) in enumerate(zip(frames, frame_indexes)):
current_sequence_plan = {
'type': 'vae_image',
'enable_cfg': int(enable_cfg),
'loss': 0,
'special_token_loss': 0,
'special_token_label': None,
'split_start': idx == 0,
'split_end': idx == len(frames) - 1,
}
if idx < len(frame_indexes) - 1:
current_sequence_plan['frame_delta'] = frame_indexes[idx + 1] - frame_idx
data['sequence_plan'].append(current_sequence_plan)
image_tensor = self.transform(image)
height, width = image_tensor.shape[1:]
data['image_tensor_list'].append(image_tensor)
data['num_tokens'] += width * height // self.transform.stride ** 2
return data
class ParquetStandardIterableDataset(DistributedIterableDataset):
def __init__(
self, dataset_name, transform, tokenizer, vit_transform,
data_dir_list, num_used_data, parquet_info,
local_rank=0, world_size=1, num_workers=8, data_status=None,
):
"""
data_dir_list: list of data directories contains parquet files
num_used_data: list of number of sampled data paths for each data directory
vit_transform: input transform for vit model.
"""
super().__init__(dataset_name, local_rank, world_size, num_workers)
self.transform = transform
self.vit_transform = vit_transform
self.tokenizer = tokenizer
self.data_status = data_status
self.data_paths = self.get_data_paths(data_dir_list, num_used_data, parquet_info)
self.set_epoch()
def get_data_paths(self, data_dir_list, num_used_data, parquet_info):
row_groups = []
for data_dir, num_data_path in zip(data_dir_list, num_used_data):
data_paths = get_parquet_data_paths([data_dir], [num_data_path])
for data_path in data_paths:
if data_path in parquet_info.keys():
num_row_groups = parquet_info[data_path]['num_row_groups']
for rg_idx in range(num_row_groups):
row_groups.append((data_path, rg_idx))
return row_groups
def parse_row(self, row):
raise NotImplementedError
def __iter__(self):
file_paths_per_worker, worker_id = self.get_data_paths_per_worker()
if self.data_status is not None:
global_row_group_start_id = self.data_status[worker_id][0]
row_start_id = self.data_status[worker_id][1] + 1
else:
global_row_group_start_id = 0
row_start_id = 0
print(
f"rank-{self.local_rank} worker-{worker_id} dataset-{self.dataset_name}: "
f"resuming data at global_rg#{global_row_group_start_id}, row#{row_start_id}"
)
while True:
file_paths_per_worker_ = file_paths_per_worker[global_row_group_start_id:]
for global_row_group_idx, (parquet_file_path, row_group_id) in enumerate(
file_paths_per_worker_, start=global_row_group_start_id
):
fs = init_arrow_pf_fs(parquet_file_path)
with fs.open_input_file(parquet_file_path) as f:
try:
fr = pq.ParquetFile(f)
df = fr.read_row_group(row_group_id).to_pandas()
df = df.iloc[row_start_id:]
except Exception as e:
print(f'Error {e} in rg#{row_group_id}, {parquet_file_path}')
continue
for row_idx, row in df.iterrows():
try:
data = self.parse_row(row)
if len(data) == 0:
continue
data['data_indexes'] = {
"data_indexes": [global_row_group_idx, row_idx],
"worker_id": worker_id,
"dataset_name": self.dataset_name,
}
except Exception as e:
print(f'Error {e} in rg#{row_group_id}, {parquet_file_path}')
continue
yield data
row_start_id = 0
global_row_group_start_id = 0
print(f"{self.dataset_name} repeat in rank-{self.local_rank} worker-{worker_id}")
|