File size: 7,970 Bytes
e6af450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0

import json
import os
import traceback
from PIL import Image, ImageFile, PngImagePlugin

from .data_utils import pil_img2rgb
from .distributed_iterable_dataset import DistributedIterableDataset


Image.MAX_IMAGE_PIXELS = 200000000
ImageFile.LOAD_TRUNCATED_IMAGES = True
MaximumDecompressedSize = 1024
MegaByte = 2 ** 20
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte


class SftJSONLIterableDataset(DistributedIterableDataset):
    def __init__(
        self, dataset_name, transform, tokenizer, frame_sampler, 
        jsonl_path_list, data_dir_list, num_used_data, 
        local_rank=0, world_size=1, num_workers=8, data_status=None, 
        shuffle_lines=False, shuffle_seed=0,
    ):
        """
        jsonl_path_list: list of jsonl file paths
        data_dir_list: list of image directories containing the images of each jsonl file
        num_used_data: list of number of sampled data points for each jsonl
        """
        super().__init__(dataset_name, local_rank, world_size, num_workers)
        self.transform = transform
        self.tokenizer = tokenizer
        self.frame_sampler = frame_sampler
        self.data_status = data_status
        self.data_paths = self.get_data_paths(
            jsonl_path_list, 
            data_dir_list, 
            num_used_data, 
            shuffle_lines, 
            shuffle_seed,
        )
        self.set_epoch()

    def get_data_paths(
        self, 
        jsonl_path_list, 
        data_dir_list, 
        num_used_data, 
        shuffle_lines, 
        shuffle_seed,
    ):
        data_paths = []
        for jsonl_path, image_dir, num_data_point in zip(
            jsonl_path_list, data_dir_list, num_used_data
        ):
            with open(jsonl_path, 'r') as f:
                raw_data = f.readlines()
            if shuffle_lines:
                self.rng.seed(shuffle_seed)
                self.rng.shuffle(raw_data)
            raw_data = raw_data[:num_data_point]
            data_paths.extend([(json_data, image_dir) for json_data in raw_data])
        return data_paths

    def change_format(self, data, num_images):
        elements = []
        for conversation in data['conversations']:
            if conversation['from'] == 'human':
                if '<image>' not in conversation['value']:
                    elements.append({
                        'type': 'text',
                        'has_loss': 0,
                        'text': conversation['value'],
                    })
                else:
                    text_list = conversation['value'].split('<image>')
                    for idx, text in enumerate(text_list):
                        if text.strip() != '':
                            elements.append({
                                'type': 'text',
                                'has_loss': 0,
                                'text': text.strip(),
                            })
                        if (idx != len(text_list) - 1) and (idx < num_images):
                            elements.append({'type': 'image',})
            elif conversation['from'] == 'gpt':
                elements.append({
                    'type': 'text',
                    'has_loss': 1,
                    'text': conversation['value'],
                })
        return elements

    def __iter__(self):
        data_paths_per_worker, worker_id = self.get_data_paths_per_worker()
        if self.data_status is not None:
            row_start_id = self.data_status[worker_id] + 1
        else:
            row_start_id = 0
        transform_stride = self.transform.stride

        print(
            f"rank-{self.local_rank} worker-{worker_id} dataset-{self.dataset_name}: "
            f"resuming data at row#{row_start_id}"
        )

        while True:
            data_paths_per_worker_ = data_paths_per_worker[row_start_id:]
            for row_idx, (data, image_dir) in enumerate(data_paths_per_worker_, start=row_start_id):
                num_tokens = 0
                image_tensor_list = []
                text_ids_list = []
                sequence_plan = []

                try:
                    data_item = json.loads(data)
                    raw_images = None
                    if 'image' in data_item:
                        if type(data_item['image']) == list:
                            raw_images = [
                                pil_img2rgb(Image.open(os.path.join(image_dir, image)))
                                for image in data_item['image']
                            ]
                        else:
                            raw_images = [
                                pil_img2rgb(Image.open(os.path.join(image_dir, data_item['image'])))
                            ]
                    elif 'video' in data_item:
                        raw_images = self.frame_sampler(os.path.join(image_dir, data_item['video']))
                        special_tokens = '<image>' * len(raw_images)
                        for item in data_item['conversations']:
                            if '<video>' in item['value']:
                                item['value'] = item['value'].replace('<video>', special_tokens)
                                break
                            else:
                                raise ValueError("Cannot find <video> in the conversation!")
                except:
                    traceback.print_exc()
                    continue

                if raw_images:
                    for raw_image in raw_images:
                        image_tensor = self.transform(raw_image, img_num=len(raw_images))
                        image_tensor_list.append(image_tensor)
                        height, width = image_tensor.shape[1:]
                        num_tokens += width * height // transform_stride ** 2

                elements = self.change_format(data_item, len(image_tensor_list))

                for item in elements:
                    if item['type'] == 'text':
                        text_data = item['text']
                        text_ids = self.tokenizer.encode(text_data)
                        if len(text_ids) > 0:
                            text_ids_list.append(text_ids)
                            num_tokens += len(text_ids)
                            current_plan = {
                                'type': 'text',
                                'enable_cfg': 0,
                                'loss': item['has_loss'],
                                'special_token_loss': 0,
                                'special_token_label': None,
                            }
                            sequence_plan.append(current_plan)
                    elif item['type'] == 'image':
                        current_plan = {
                            'type': 'vit_image',
                            'enable_cfg': 0,
                            'loss': 0,
                            'special_token_loss': 0,
                            'special_token_label': None,
                        }
                        sequence_plan.append(current_plan)

                has_loss = [item['loss'] for item in sequence_plan]
                if sum(has_loss) == 0:
                    print(f'No loss defined, skipped.')
                    continue

                yield dict(
                    image_tensor_list=image_tensor_list,
                    text_ids_list=text_ids_list,
                    sequence_plan=sequence_plan,
                    num_tokens=num_tokens,
                    data_indexes={
                        "data_indexes": row_idx,
                        "worker_id": worker_id,
                        "dataset_name": self.dataset_name,
                    }
                )

            row_start_id = 0
            print(f"{self.dataset_name} repeat in rank-{self.local_rank} worker-{worker_id}")