Spaces:
Running
on
Zero
Running
on
Zero
File size: 46,847 Bytes
5d99e45 c40e1ba 5d99e45 c40e1ba 5d99e45 c40e1ba 5d99e45 c40e1ba 5d99e45 c40e1ba 5d99e45 c40e1ba 5d99e45 12a0dd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 |
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import copy
from typing import List, Tuple, Optional
import matplotlib.pyplot as plt
from PIL import Image
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.attention.flex_attention import create_block_mask
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel
from data.data_utils import (
create_sparse_mask,
get_flattened_position_ids_extrapolate,
get_flattened_position_ids_interpolate,
patchify,
)
from .qwen2_navit import NaiveCache
from .modeling_utils import MLPconnector, TimestepEmbedder, PositionEmbedding
class BagelConfig(PretrainedConfig):
def __init__(
self,
visual_gen=True,
visual_und=True,
llm_config=None,
vit_config=None,
vae_config=None,
latent_patch_size=2,
max_latent_size=32,
vit_max_num_patch_per_side=70,
connector_act="gelu_pytorch_tanh",
interpolate_pos=False,
timestep_shift=1.0,
**kwargs
):
super().__init__(**kwargs)
self.visual_gen = visual_gen
self.visual_und = visual_und
self.llm_config = llm_config
self.vit_config = vit_config
self.vae_config = vae_config
self.latent_patch_size = latent_patch_size
self.max_latent_size = max_latent_size
self.vit_max_num_patch_per_side = vit_max_num_patch_per_side
self.connector_act = connector_act
self.interpolate_pos = interpolate_pos
self.timestep_shift = timestep_shift
class Bagel(PreTrainedModel):
config_class = BagelConfig
base_model_prefix = 'bagel'
def __init__(self, language_model, vit_model, config: BagelConfig):
super().__init__(config)
self.language_model = language_model
self.hidden_size = config.llm_config.hidden_size
self.use_moe = "Mo" in config.llm_config.layer_module
self.num_heads = config.llm_config.num_attention_heads
if config.visual_gen:
self.latent_patch_size = config.latent_patch_size
self.timestep_shift = config.timestep_shift
self.latent_downsample = config.vae_config.downsample * config.latent_patch_size
self.max_latent_size = config.max_latent_size
self.latent_channel = config.vae_config.z_channels
self.patch_latent_dim = self.latent_patch_size ** 2 * self.latent_channel
self.time_embedder = TimestepEmbedder(self.hidden_size)
self.vae2llm = nn.Linear(self.patch_latent_dim, self.hidden_size)
self.llm2vae = nn.Linear(self.hidden_size, self.patch_latent_dim)
self.latent_pos_embed = PositionEmbedding(self.max_latent_size, self.hidden_size)
if config.visual_und:
self.vit_model = vit_model
self.vit_patch_size = config.vit_config.patch_size
self.vit_max_num_patch_per_side = config.vit_max_num_patch_per_side
self.vit_hidden_size = config.vit_config.hidden_size
self.connector = MLPconnector(self.vit_hidden_size, self.hidden_size, config.connector_act)
self.vit_pos_embed = PositionEmbedding(self.vit_max_num_patch_per_side, self.hidden_size)
if config.interpolate_pos:
self.get_flattened_position_ids = get_flattened_position_ids_interpolate
else:
self.get_flattened_position_ids = get_flattened_position_ids_extrapolate
self.config = config
self._init_weights()
def _init_weights(self):
if self.config.visual_gen:
nn.init.constant_(self.llm2vae.weight, 0)
nn.init.constant_(self.llm2vae.bias, 0)
def forward(
self,
sequence_length: int,
packed_text_ids: torch.LongTensor,
packed_text_indexes: torch.LongTensor,
sample_lens: List[int],
packed_position_ids: torch.LongTensor,
nested_attention_masks: List[torch.Tensor] = None,
split_lens: List[int] = None,
attn_modes: List[str] = None,
# for visual understanding
ce_loss_indexes: Optional[torch.BoolTensor] = None,
packed_label_ids: Optional[torch.LongTensor] = None,
packed_vit_tokens: Optional[torch.Tensor] = None,
packed_vit_token_indexes: Optional[torch.LongTensor] = None,
packed_vit_position_ids: Optional[torch.LongTensor] = None,
vit_token_seqlens: Optional[torch.IntTensor] = None,
# for visual generation
padded_latent: Optional[torch.Tensor] = None,
patchified_vae_latent_shapes: Optional[List[Tuple[int, int]]] = None,
packed_latent_position_ids: Optional[torch.LongTensor] = None,
packed_vae_token_indexes: Optional[torch.LongTensor] = None,
packed_timesteps: Optional[torch.LongTensor] = None,
mse_loss_indexes: Optional[torch.BoolTensor] = None,
) -> torch.Tensor:
"""
Args:
sequence_length: length of sequence.
packed_text_ids: 1-D int tensor, packed text token ids.
packed_text_indexes: 1-D int tensor, packed text token indexes in sequence.
sample_lens: A list of N ints, length of each sample in packed_sequence.
nested_attention_masks: A list of N 2-D float tensor, where 0.0 means attention and
-inf means ignore.
packed_position_ids: packed 1-D positions, an image has only one global position shared
by all latent tokens.
packed_vit_tokens: packed patchified image tokens for vit model.
packed_vit_position_ids: 1-D int tensor, the position of each token for vit model.
packed_vit_token_indexes: 1-D int tensor, packed vit token indexes in sequence.
vit_token_seqlens: 1-D int tensor, the length of each image tokens for vit model.
packed_label_ids: 1-D int tensor, packed label token ids.
ce_loss_indexes: 1-D bool tensor, where to compute ce loss.
padded_latent: padded latent from VAE encoder.
patchified_vae_latent_shapes: A list of (h, w) tuples, patchfied latent shapes of each image.
packed_latent_position_ids: 1-D int tensor, the position of each token for latent.
packed_vae_token_indexes: 1-D int tensor, padded image token indexes in sequence.
packed_timesteps: 1-D float tensor, flow timesteps. 0 indicates use clean image.
mse_loss_indexes: 1-D bool tensor, where to compute mse loss.
"""
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
packed_sequence = packed_text_embedding.new_zeros(size=(sequence_length, self.hidden_size))
packed_sequence[packed_text_indexes] = packed_text_embedding
if nested_attention_masks is None:
sparse_mask = create_sparse_mask(sample_lens, split_lens, attn_modes, packed_text_embedding.device)
seqlen = sum(sample_lens)
block_mask = create_block_mask(
sparse_mask, B=1, H=self.num_heads, Q_LEN=seqlen, KV_LEN=seqlen,
device=packed_text_embedding.device, BLOCK_SIZE=128, _compile=True
)
attention_mask = block_mask
else:
attention_mask = nested_attention_masks
if self.config.visual_und:
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
cu_seqlens = cu_seqlens.to(torch.int32)
max_seqlen = torch.max(vit_token_seqlens).item()
packed_vit_token_embed = self.vit_model(
packed_pixel_values=packed_vit_tokens,
packed_flattened_position_ids=packed_vit_position_ids,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
packed_vit_token_embed = self.connector(packed_vit_token_embed)
vit_token_pos_emb = self.vit_pos_embed(packed_vit_position_ids)
packed_vit_token_embed = packed_vit_token_embed + vit_token_pos_emb
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
if self.config.visual_gen:
p = self.latent_patch_size
packed_latent = []
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
packed_latent.append(latent)
packed_latent_clean = torch.cat(packed_latent, dim=0)
noise = torch.randn_like(packed_latent_clean)
packed_timesteps = torch.sigmoid(packed_timesteps)
packed_timesteps = self.timestep_shift * packed_timesteps / (1 + (self.timestep_shift - 1) * packed_timesteps)
packed_latent = (1 - packed_timesteps[:, None]) * packed_latent_clean + packed_timesteps[:, None] * noise
packed_timestep_embeds = self.time_embedder(packed_timesteps)
latent_token_pos_emb = self.latent_pos_embed(packed_latent_position_ids)
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + latent_token_pos_emb
packed_sequence[packed_vae_token_indexes] = packed_latent
extra_inputs = {}
if self.use_moe:
packed_und_token_indexes = packed_text_indexes
if packed_vit_token_indexes is not None:
packed_und_token_indexes=torch.cat([packed_text_indexes, packed_vit_token_indexes], dim=0)
extra_inputs.update(
packed_und_token_indexes=packed_und_token_indexes,
packed_gen_token_indexes=packed_vae_token_indexes,
)
last_hidden_state = self.language_model(
packed_sequence=packed_sequence,
sample_lens=sample_lens,
attention_mask=attention_mask,
packed_position_ids=packed_position_ids,
**extra_inputs,
)
mse = None
if self.config.visual_gen:
packed_mse_preds = self.llm2vae(last_hidden_state[mse_loss_indexes])
target = noise - packed_latent_clean # NOTE: v_t=dx_t/dt=x_1-x_0, pointing from data to noise
has_mse = packed_timesteps > 0
mse = (packed_mse_preds - target[has_mse]) ** 2
ce = None
if ce_loss_indexes is not None:
packed_ce_preds = self.language_model.lm_head(last_hidden_state[ce_loss_indexes])
ce = F.cross_entropy(packed_ce_preds, packed_label_ids, reduction="none")
return dict(mse=mse, ce=ce)
def prepare_prompts(self, curr_kvlens, curr_rope, prompts, tokenizer, new_token_ids):
packed_text_ids = list()
packed_text_position_ids = list()
text_token_lens = list()
packed_text_indexes = list()
packed_key_value_indexes = list()
curr = 0
newlens, new_rope = list(), list()
for prompt, curr_kvlen, curr_position_id in zip(prompts, curr_kvlens, curr_rope):
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
curr += curr_kvlen
text_ids = tokenizer.encode(prompt)
text_ids = [new_token_ids['bos_token_id']] + text_ids + [new_token_ids['eos_token_id']]
text_token_lens.append(len(text_ids))
packed_text_ids.extend(text_ids)
packed_text_position_ids.extend(range(curr_position_id, curr_position_id + len(text_ids)))
packed_text_indexes.extend(range(curr, curr + len(text_ids)))
newlens.append(curr_kvlen + len(text_ids))
new_rope.append(curr_position_id + len(text_ids))
curr += len(text_ids)
generation_input = {
"text_token_lens": torch.tensor(text_token_lens, dtype=torch.int),
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
"packed_text_position_ids": torch.tensor(packed_text_position_ids, dtype=torch.long),
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
}
return generation_input, newlens, new_rope
@torch.no_grad
def forward_cache_update_text(
self,
past_key_values: NaiveCache,
packed_text_ids: torch.IntTensor,
packed_text_position_ids: torch.LongTensor,
text_token_lens: torch.LongTensor,
packed_text_indexes: torch.LongTensor,
packed_key_value_indexes: torch.LongTensor,
key_values_lens: torch.IntTensor,
):
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
extra_inputs = {}
if self.use_moe:
extra_inputs = {"mode": "und"}
output = self.language_model.forward_inference(
packed_query_sequence=packed_text_embedding,
query_lens=text_token_lens,
packed_query_position_ids=packed_text_position_ids,
packed_query_indexes=packed_text_indexes,
past_key_values=past_key_values,
packed_key_value_indexes=packed_key_value_indexes,
key_values_lens=key_values_lens,
update_past_key_values=True,
is_causal=True,
**extra_inputs,
)
past_key_values = output.past_key_values
return past_key_values
def prepare_vit_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids):
packed_vit_token_indexes = list()
vit_token_seqlens, packed_vit_tokens, packed_vit_position_ids = list(), list(), list()
packed_text_ids, packed_text_indexes = list(), list()
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
packed_key_value_indexes = list()
_curr = curr = 0
newlens, new_rope = list(), list()
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
curr += curr_kvlen
packed_text_ids.append(new_token_ids['start_of_image'])
packed_text_indexes.append(_curr)
packed_indexes.append(curr)
curr += 1
_curr += 1
image_tensor = transforms(image)
vit_position_ids = self.get_flattened_position_ids(
image_tensor.size(1), image_tensor.size(2),
self.vit_patch_size,
max_num_patches_per_side=self.vit_max_num_patch_per_side
)
vit_tokens = patchify(image_tensor, self.vit_patch_size)
packed_vit_tokens.append(vit_tokens)
num_img_tokens = vit_tokens.shape[0]
packed_vit_position_ids.append(vit_position_ids)
vit_token_seqlens.append(num_img_tokens)
packed_vit_token_indexes.extend(range(_curr, _curr + num_img_tokens))
packed_indexes.extend(range(curr, curr + num_img_tokens))
curr += num_img_tokens
_curr += num_img_tokens
packed_text_ids.append(new_token_ids['end_of_image'])
packed_text_indexes.append(_curr)
packed_indexes.append(curr)
curr += 1
_curr += 1
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
packed_seqlens.append(num_img_tokens + 2)
newlens.append(curr_kvlen + num_img_tokens + 2)
new_rope.append(curr_position_id + 1)
generation_input = {
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
"vit_token_seqlens": torch.tensor(vit_token_seqlens, dtype=torch.int),
"packed_vit_tokens": torch.cat(packed_vit_tokens, dim=0),
"packed_vit_position_ids": torch.cat(packed_vit_position_ids, dim=0),
"packed_vit_token_indexes": torch.tensor(packed_vit_token_indexes, dtype=torch.long),
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
}
return generation_input, newlens, new_rope
@torch.no_grad
def forward_cache_update_vit(
self,
past_key_values: NaiveCache,
packed_text_ids: torch.LongTensor,
packed_text_indexes: torch.LongTensor,
packed_vit_tokens: torch.Tensor,
packed_vit_token_indexes: torch.LongTensor,
packed_vit_position_ids: torch.LongTensor,
vit_token_seqlens: torch.IntTensor,
packed_position_ids: torch.LongTensor,
packed_seqlens: torch.IntTensor,
packed_indexes: torch.LongTensor,
packed_key_value_indexes: torch.LongTensor,
key_values_lens: torch.IntTensor,
):
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
packed_sequence[packed_text_indexes] = packed_text_embedding
cu_seqlens = torch.nn.functional.pad(torch.cumsum(vit_token_seqlens, dim=0), (1, 0))
cu_seqlens = cu_seqlens.to(torch.int32)
max_seqlen = torch.max(vit_token_seqlens).item()
packed_vit_token_embed = self.vit_model(
packed_pixel_values=packed_vit_tokens,
packed_flattened_position_ids=packed_vit_position_ids,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
packed_vit_token_embed = self.connector(packed_vit_token_embed)
pos_emb = self.vit_pos_embed(packed_vit_position_ids)
packed_vit_token_embed = packed_vit_token_embed + pos_emb
packed_sequence[packed_vit_token_indexes] = packed_vit_token_embed
extra_inputs = {}
if self.use_moe:
extra_inputs = {"mode": "und"}
output = self.language_model.forward_inference(
packed_query_sequence=packed_sequence,
query_lens=packed_seqlens,
packed_query_position_ids=packed_position_ids,
packed_query_indexes=packed_indexes,
past_key_values=past_key_values,
packed_key_value_indexes=packed_key_value_indexes,
key_values_lens=key_values_lens,
update_past_key_values=True,
is_causal=False,
**extra_inputs,
)
past_key_values = output.past_key_values
return past_key_values
def prepare_vae_images(self, curr_kvlens, curr_rope, images, transforms, new_token_ids, timestep=0):
patchified_vae_latent_shapes, packed_vae_position_ids = list(), list()
packed_vae_token_indexes = list()
packed_text_ids, packed_text_indexes = list(), list()
packed_seqlens, packed_position_ids, packed_indexes = list(), list(), list()
packed_key_value_indexes = list()
_curr = curr = 0
vae_image_tensors = list()
newlens, new_rope = list(), list()
for image, curr_kvlen, curr_position_id in zip(images, curr_kvlens, curr_rope):
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
curr += curr_kvlen
packed_text_ids.append(new_token_ids['start_of_image'])
packed_text_indexes.append(_curr)
packed_indexes.append(curr)
curr += 1
_curr += 1
image_tensor = transforms(image)
vae_image_tensors.append(image_tensor)
vae_posiiton_ids = self.get_flattened_position_ids(
image_tensor.size(1), image_tensor.size(2),
self.latent_downsample,
max_num_patches_per_side=self.max_latent_size
)
packed_vae_position_ids.append(vae_posiiton_ids)
H, W = image_tensor.shape[1:]
h = H // self.latent_downsample
w = W // self.latent_downsample
patchified_vae_latent_shapes.append((h, w))
num_img_tokens = w * h
packed_vae_token_indexes.extend(range(_curr, _curr + num_img_tokens))
packed_indexes.extend(range(curr, curr + num_img_tokens))
curr += num_img_tokens
_curr += num_img_tokens
packed_text_ids.append(new_token_ids['end_of_image'])
packed_text_indexes.append(_curr)
packed_indexes.append(curr)
curr += 1
_curr += 1
packed_position_ids.extend([curr_position_id] * (num_img_tokens + 2))
packed_seqlens.append(num_img_tokens + 2)
newlens.append(curr_kvlen + num_img_tokens + 2)
new_rope.append(curr_position_id + 1)
image_sizes = [item.shape for item in vae_image_tensors]
max_image_size = [max(item) for item in list(zip(*image_sizes))]
padded_images = torch.zeros(size=(len(vae_image_tensors), *max_image_size))
for i, image_tensor in enumerate(vae_image_tensors):
padded_images[i, :, :image_tensor.shape[1], :image_tensor.shape[2]] = image_tensor
generation_input = {
"padded_images": padded_images,
"patchified_vae_latent_shapes": patchified_vae_latent_shapes,
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
"packed_timesteps": torch.tensor([timestep]),
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
}
return generation_input, newlens, new_rope
@torch.no_grad
def forward_cache_update_vae(
self,
vae_model,
past_key_values: NaiveCache,
padded_images: torch.Tensor,
patchified_vae_latent_shapes: List,
packed_vae_position_ids: torch.LongTensor,
packed_timesteps: torch.Tensor,
packed_vae_token_indexes: torch.LongTensor,
packed_text_ids: torch.LongTensor,
packed_text_indexes: torch.LongTensor,
packed_position_ids: torch.LongTensor,
packed_seqlens: torch.IntTensor,
packed_indexes: torch.LongTensor,
key_values_lens: torch.IntTensor,
packed_key_value_indexes: torch.Tensor,
):
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
packed_sequence[packed_text_indexes] = packed_text_embedding
padded_latent = vae_model.encode(padded_images)
p = self.latent_patch_size
packed_latent = list()
for latent, (h, w) in zip(padded_latent, patchified_vae_latent_shapes):
latent = latent[:, :h * p, :w * p].reshape(self.latent_channel, h, p, w, p)
latent = torch.einsum("chpwq->hwpqc", latent).reshape(-1, p * p * self.latent_channel)
packed_latent.append(latent)
packed_latent = torch.cat(packed_latent, dim=0)
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
packed_timestep_embeds = self.time_embedder(packed_timesteps)
packed_latent = self.vae2llm(packed_latent) + packed_timestep_embeds + packed_pos_embed
packed_sequence[packed_vae_token_indexes] = packed_latent
extra_inputs = {}
if self.use_moe:
extra_inputs = {
"mode": "gen",
"packed_vae_token_indexes": packed_vae_token_indexes,
"packed_text_indexes": packed_text_indexes
}
output = self.language_model.forward_inference(
packed_query_sequence=packed_sequence,
query_lens=packed_seqlens,
packed_query_position_ids=packed_position_ids,
packed_query_indexes=packed_indexes,
past_key_values=past_key_values,
key_values_lens=key_values_lens,
packed_key_value_indexes=packed_key_value_indexes,
update_past_key_values=True,
is_causal=False,
**extra_inputs,
)
past_key_values = output.past_key_values
return past_key_values
def prepare_vae_latent(self, curr_kvlens, curr_rope, image_sizes, new_token_ids):
packed_text_ids, packed_text_indexes = list(), list()
packed_vae_position_ids, packed_vae_token_indexes, packed_init_noises = list(), list(), list()
packed_position_ids, packed_seqlens, packed_indexes = list(), list(), list()
packed_key_value_indexes = list()
query_curr = curr = 0
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
curr += curr_kvlen
packed_text_ids.append(new_token_ids['start_of_image'])
packed_text_indexes.append(query_curr)
packed_indexes.append(curr)
curr += 1
query_curr += 1
vae_posiiton_ids = self.get_flattened_position_ids(
H, W,
self.latent_downsample,
max_num_patches_per_side=self.max_latent_size
)
packed_vae_position_ids.append(vae_posiiton_ids)
h, w = H // self.latent_downsample, W // self.latent_downsample
num_image_tokens = h * w
packed_init_noises.append(
torch.randn(num_image_tokens, self.latent_channel * self.latent_patch_size ** 2)
)
packed_vae_token_indexes.extend(range(query_curr, query_curr + num_image_tokens))
packed_indexes.extend(range(curr, curr + num_image_tokens))
curr += num_image_tokens
query_curr += num_image_tokens
packed_text_ids.append(new_token_ids['end_of_image'])
packed_text_indexes.append(query_curr)
packed_indexes.append(curr)
curr += 1
query_curr += 1
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
packed_seqlens.append(num_image_tokens + 2)
generation_input = {
"packed_text_ids": torch.tensor(packed_text_ids, dtype=torch.long),
"packed_text_indexes": torch.tensor(packed_text_indexes, dtype=torch.long),
"packed_init_noises": torch.cat(packed_init_noises, dim=0),
"packed_vae_position_ids": torch.cat(packed_vae_position_ids, dim=0),
"packed_vae_token_indexes": torch.tensor(packed_vae_token_indexes, dtype=torch.long),
"packed_seqlens": torch.tensor(packed_seqlens, dtype=torch.int),
"packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
"packed_indexes": torch.tensor(packed_indexes, dtype=torch.long),
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
}
return generation_input
def prepare_vae_latent_cfg(self, curr_kvlens, curr_rope, image_sizes):
packed_position_ids, packed_indexes, packed_key_value_indexes = list(), list(), list()
query_curr = curr = 0
for (H, W), curr_kvlen, curr_position_id in zip(image_sizes, curr_kvlens, curr_rope):
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
curr += curr_kvlen
packed_indexes.append(curr)
curr += 1
query_curr += 1
h, w = H // self.latent_downsample, W // self.latent_downsample
num_image_tokens = h * w
packed_indexes.extend(range(curr, curr + num_image_tokens))
curr += num_image_tokens
query_curr += num_image_tokens
packed_indexes.append(curr)
curr += 1
query_curr += 1
packed_position_ids.extend([curr_position_id] * (num_image_tokens + 2))
generation_input = {
"cfg_packed_position_ids": torch.tensor(packed_position_ids, dtype=torch.long),
"cfg_key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
"cfg_packed_query_indexes": torch.tensor(packed_indexes, dtype=torch.long),
"cfg_packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
}
return generation_input
@torch.no_grad
def generate_image(
self,
packed_text_ids: torch.LongTensor,
packed_text_indexes: torch.LongTensor,
packed_init_noises: torch.Tensor,
packed_vae_position_ids: torch.LongTensor,
packed_vae_token_indexes: torch.LongTensor,
packed_seqlens: torch.IntTensor,
packed_position_ids: torch.LongTensor,
packed_indexes: torch.LongTensor,
past_key_values: NaiveCache,
key_values_lens: torch.IntTensor,
packed_key_value_indexes: torch.LongTensor,
num_timesteps: int = 24,
timestep_shift: float = 1.0,
cfg_renorm_min: float = 0.0,
cfg_renorm_type: str = "global",
cfg_interval: Optional[Tuple[float, float]] = [0, 1],
# cfg_text
cfg_text_scale: float = 1.0,
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
cfg_text_past_key_values: Optional[NaiveCache] = None,
cfg_text_key_values_lens: Optional[torch.IntTensor] = None,
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
# cfg_img
cfg_img_scale: float = 1.0,
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
cfg_img_past_key_values: Optional[NaiveCache] = None,
cfg_img_key_values_lens: Optional[torch.IntTensor] = None,
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
cfg_type: str = "parallel",
):
x_t = packed_init_noises
timesteps = torch.linspace(1, 0, num_timesteps, device=x_t.device)
timesteps = timestep_shift * timesteps / (1 + (timestep_shift - 1) * timesteps)
dts = timesteps[:-1] - timesteps[1:]
timesteps = timesteps[:-1]
for i, t in enumerate(timesteps):
timestep = torch.tensor([t] * x_t.shape[0], device=x_t.device)
if t > cfg_interval[0] and t <= cfg_interval[1]:
cfg_text_scale_ = cfg_text_scale
cfg_img_scale_ = cfg_img_scale
else:
cfg_text_scale_ = 1.0
cfg_img_scale_ = 1.0
v_t = self._forward_flow(
x_t=x_t,
timestep=timestep,
packed_vae_token_indexes=packed_vae_token_indexes,
packed_vae_position_ids=packed_vae_position_ids,
packed_text_ids=packed_text_ids,
packed_text_indexes=packed_text_indexes,
packed_position_ids=packed_position_ids,
packed_indexes=packed_indexes,
packed_seqlens=packed_seqlens,
key_values_lens=key_values_lens,
past_key_values=past_key_values,
packed_key_value_indexes=packed_key_value_indexes,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
# cfg_text
cfg_text_scale=cfg_text_scale_,
cfg_text_packed_position_ids=cfg_text_packed_position_ids,
cfg_text_packed_query_indexes=cfg_text_packed_query_indexes,
cfg_text_key_values_lens=cfg_text_key_values_lens,
cfg_text_past_key_values=cfg_text_past_key_values,
cfg_text_packed_key_value_indexes=cfg_text_packed_key_value_indexes,
# cfg_img
cfg_img_scale=cfg_img_scale_,
cfg_img_packed_position_ids=cfg_img_packed_position_ids,
cfg_img_packed_query_indexes=cfg_img_packed_query_indexes,
cfg_img_key_values_lens=cfg_img_key_values_lens,
cfg_img_past_key_values=cfg_img_past_key_values,
cfg_img_packed_key_value_indexes=cfg_img_packed_key_value_indexes,
cfg_type=cfg_type,
)
x_t = x_t - v_t.to(x_t.device) * dts[i] # velocity pointing from data to noise
unpacked_latent = x_t.split((packed_seqlens - 2).tolist())
return unpacked_latent
@torch.no_grad
def _forward_flow(
self,
x_t: torch.Tensor,
timestep: torch.LongTensor,
packed_vae_token_indexes: torch.LongTensor,
packed_vae_position_ids: torch.LongTensor,
packed_text_ids: torch.LongTensor,
packed_text_indexes: torch.LongTensor,
packed_indexes: torch.LongTensor,
packed_position_ids: torch.LongTensor,
packed_seqlens: torch.IntTensor,
key_values_lens: torch.IntTensor,
past_key_values: NaiveCache,
packed_key_value_indexes: torch.LongTensor,
cfg_renorm_min: float = 0.0,
cfg_renorm_type: str = "global",
# cfg_text
cfg_text_scale: float = 1.0,
cfg_text_packed_position_ids: Optional[torch.LongTensor] = None,
cfg_text_packed_query_indexes: Optional[torch.LongTensor] = None,
cfg_text_key_values_lens: Optional[torch.Tensor] = None,
cfg_text_past_key_values: Optional[NaiveCache] = None,
cfg_text_packed_key_value_indexes: Optional[torch.LongTensor] = None,
# cfg_img
cfg_img_scale: float = 1.0,
cfg_img_packed_position_ids: Optional[torch.LongTensor] = None,
cfg_img_packed_query_indexes: Optional[torch.LongTensor] = None,
cfg_img_key_values_lens: Optional[torch.Tensor] = None,
cfg_img_past_key_values: Optional[NaiveCache] = None,
cfg_img_packed_key_value_indexes: Optional[torch.LongTensor] = None,
cfg_type: str = "parallel",
):
packed_text_embedding = self.language_model.model.embed_tokens(packed_text_ids)
packed_sequence = packed_text_embedding.new_zeros((sum(packed_seqlens), self.hidden_size))
packed_sequence[packed_text_indexes] = packed_text_embedding
assert timestep.unique().shape[0] == 1
packed_pos_embed = self.latent_pos_embed(packed_vae_position_ids)
packed_timestep_embeds = self.time_embedder(timestep)
x_t = self.vae2llm(x_t) + packed_timestep_embeds + packed_pos_embed
packed_sequence[packed_vae_token_indexes] = x_t
extra_inputs = {}
if self.use_moe:
extra_inputs = {
"mode": "gen",
"packed_vae_token_indexes": packed_vae_token_indexes,
"packed_text_indexes": packed_text_indexes
}
output = self.language_model.forward_inference(
packed_query_sequence=packed_sequence,
query_lens=packed_seqlens,
packed_query_position_ids=packed_position_ids,
packed_query_indexes=packed_indexes,
past_key_values=past_key_values,
key_values_lens=key_values_lens,
packed_key_value_indexes=packed_key_value_indexes,
update_past_key_values=False,
is_causal=False,
**extra_inputs,
)
v_t = self.llm2vae(output.packed_query_sequence)
v_t = v_t[packed_vae_token_indexes]
if cfg_text_scale > 1.0:
cfg_text_output = self.language_model.forward_inference(
packed_query_sequence=packed_sequence,
query_lens=packed_seqlens,
packed_query_position_ids=cfg_text_packed_position_ids,
packed_query_indexes=cfg_text_packed_query_indexes,
past_key_values=cfg_text_past_key_values,
key_values_lens=cfg_text_key_values_lens,
packed_key_value_indexes=cfg_text_packed_key_value_indexes,
update_past_key_values=False,
is_causal=False,
**extra_inputs,
)
cfg_text_v_t = self.llm2vae(cfg_text_output.packed_query_sequence)
cfg_text_v_t = cfg_text_v_t[packed_vae_token_indexes]
if cfg_img_scale > 1.0:
cfg_img_output = self.language_model.forward_inference(
packed_query_sequence=packed_sequence,
query_lens=packed_seqlens,
packed_query_position_ids=cfg_img_packed_position_ids,
packed_query_indexes=cfg_img_packed_query_indexes,
past_key_values=cfg_img_past_key_values,
key_values_lens=cfg_img_key_values_lens,
packed_key_value_indexes=cfg_img_packed_key_value_indexes,
update_past_key_values=False,
is_causal=False,
**extra_inputs,
)
cfg_img_v_t = self.llm2vae(cfg_img_output.packed_query_sequence)
cfg_img_v_t = cfg_img_v_t[packed_vae_token_indexes]
if cfg_text_scale > 1.0:
if cfg_renorm_type == "text_channel":
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
norm_v_t_text_ = torch.norm(v_t_text_, dim=-1, keepdim=True)
scale = (norm_v_t / (norm_v_t_text_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
v_t_text = v_t_text_ * scale
if cfg_img_scale > 1.0:
v_t = cfg_img_v_t + cfg_img_scale * (v_t_text - cfg_img_v_t)
else:
v_t = v_t_text
else:
v_t_text_ = cfg_text_v_t + cfg_text_scale * (v_t - cfg_text_v_t)
if cfg_img_scale > 1.0:
v_t_ = cfg_img_v_t + cfg_img_scale * (v_t_text_ - cfg_img_v_t)
else:
v_t_ = v_t_text_
# NOTE norm is computed over all dimensions, thus currently only supports batch_size = 1 with navit
if cfg_renorm_type == "global":
norm_v_t = torch.norm(v_t)
norm_v_t_ = torch.norm(v_t_)
elif cfg_renorm_type == "channel":
norm_v_t = torch.norm(v_t, dim=-1, keepdim=True)
norm_v_t_ = torch.norm(v_t_, dim=-1, keepdim=True)
else:
raise NotImplementedError(f"{cfg_renorm_type} is not suppoprted")
scale = (norm_v_t / (norm_v_t_ + 1e-8)).clamp(min=cfg_renorm_min, max=1.0)
v_t = v_t_ * scale
else:
# No CFG
pass
return v_t
def prepare_start_tokens(self, curr_kvlens, curr_rope, new_token_ids):
packed_start_tokens, packed_key_value_indexes = list(), list()
packed_query_position_ids = list()
curr = 0
for curr_kvlen, curr_position_id in zip(curr_kvlens, curr_rope):
packed_key_value_indexes.extend(range(curr, curr + curr_kvlen))
packed_start_tokens.append(new_token_ids['bos_token_id'])
packed_query_position_ids.append(curr_position_id)
curr += curr_kvlen
generation_input = {
"packed_start_tokens": torch.tensor(packed_start_tokens, dtype=torch.long),
"packed_query_position_ids": torch.tensor(packed_query_position_ids, dtype=torch.long),
"key_values_lens": torch.tensor(curr_kvlens, dtype=torch.int),
"packed_key_value_indexes": torch.tensor(packed_key_value_indexes, dtype=torch.long),
}
return generation_input
@torch.no_grad
def generate_text(
self,
past_key_values: NaiveCache,
packed_key_value_indexes: torch.LongTensor,
key_values_lens: torch.IntTensor,
packed_start_tokens: torch.LongTensor,
packed_query_position_ids: torch.LongTensor,
max_length: int,
do_sample: bool = False,
temperature: float = 1.0,
end_token_id: int = None,
):
"""
Generates text token by token in a streaming fashion.
This function is a generator that yields one token at a time. It replicates
the behavior of the original batch generation function, including the handling
of start tokens and the end-of-sequence token.
"""
step = 0
curr_tokens = packed_start_tokens
while step < max_length:
packed_text_embedding = self.language_model.model.embed_tokens(curr_tokens)
query_lens = torch.ones_like(curr_tokens)
packed_query_indexes = torch.cumsum(key_values_lens, dim=0) + torch.arange(
0, len(key_values_lens),
device=key_values_lens.device,
dtype=key_values_lens.dtype
)
uppacked = list(packed_key_value_indexes.split(key_values_lens.tolist(), dim=0))
for i in range(len(uppacked)):
uppacked[i] += i
packed_key_value_indexes = torch.cat(uppacked, dim=0)
extra_inputs = {}
if self.use_moe:
extra_inputs = {"mode": "und"}
output = self.language_model.forward_inference(
packed_query_sequence=packed_text_embedding,
query_lens=query_lens,
packed_query_position_ids=packed_query_position_ids,
packed_query_indexes=packed_query_indexes,
past_key_values=past_key_values,
key_values_lens=key_values_lens,
packed_key_value_indexes=packed_key_value_indexes,
update_past_key_values=True,
is_causal=True,
**extra_inputs,
)
past_key_values = output.past_key_values
packed_query_sequence = output.packed_query_sequence
pred_logits = self.language_model.lm_head(packed_query_sequence)
if do_sample:
probs = nn.functional.softmax(pred_logits / temperature, dim=-1)
curr_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
curr_tokens = torch.argmax(pred_logits, dim=-1)
uppacked = list(packed_key_value_indexes.split(key_values_lens.tolist(), dim=0))
for i in range(len(uppacked)):
uppacked[i] = torch.cat(
[uppacked[i], torch.tensor([uppacked[i][-1] + 1], device=uppacked[i].device)], dim=0
)
packed_key_value_indexes = torch.cat(uppacked, dim=0)
key_values_lens = key_values_lens + 1
packed_query_position_ids = packed_query_position_ids + 1
step += 1
yield curr_tokens # Yield each token as it's generated
if end_token_id is not None and curr_tokens[0] == end_token_id: # only support batch=1
break
# for evaluation
@torch.no_grad()
def chat(
self,
tokenizer,
new_token_ids,
image_transform,
images,
prompt,
max_length: int,
do_sample: bool = False,
temperature: float = 1.0,
):
device = next(self.parameters()).device
if isinstance(new_token_ids, dict):
for k, v in new_token_ids.items():
if torch.is_tensor(v):
new_token_ids[k] = v.to(device)
elif torch.is_tensor(new_token_ids):
new_token_ids = new_token_ids.to(device)
# prefill
past_key_values = NaiveCache(self.config.llm_config.num_hidden_layers)
newlens = [0]
new_rope = [0]
# add images
for image in images:
generation_input, newlens, new_rope = self.prepare_vit_images(
curr_kvlens=newlens,
curr_rope=new_rope,
images=[image],
transforms=image_transform,
new_token_ids=new_token_ids,
)
for k, v in generation_input.items():
if torch.is_tensor(v):
generation_input[k] = v.to(device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
past_key_values = self.forward_cache_update_vit(past_key_values, **generation_input)
# add text
generation_input, newlens, new_rope = self.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[prompt],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
for k, v in generation_input.items():
if torch.is_tensor(v):
generation_input[k] = v.to(device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
past_key_values = self.forward_cache_update_text(past_key_values, **generation_input)
# decode
generation_input = self.prepare_start_tokens(newlens, new_rope, new_token_ids)
for k, v in generation_input.items():
if torch.is_tensor(v):
generation_input[k] = v.to(device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
for unpacked_latent in self.generate_text(
past_key_values=past_key_values,
max_length=max_length,
do_sample=do_sample,
temperature=temperature,
end_token_id=new_token_ids['eos_token_id'],
**generation_input,
):
output = tokenizer.decode(unpacked_latent[:,0])
yield output |