File size: 10,547 Bytes
e6af450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0

import functools
import os

import torch
import torch.distributed as dist
import torch.distributed.fsdp._traversal_utils as traversal_utils
from torch.distributed.device_mesh import init_device_mesh
from torch.distributed.fsdp import (
    CPUOffload,
    FullyShardedDataParallel as FSDP,
    MixedPrecision,
    BackwardPrefetch,
    ShardingStrategy,
    FullStateDictConfig,
    StateDictType,
)
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from safetensors.torch import load_file, save_file

from modeling.bagel.modeling_utils import MLPconnector, TimestepEmbedder, PositionEmbedding
from modeling.bagel.qwen2_navit import (
    Qwen2DecoderLayer, 
    Qwen2MoEDecoderLayer, 
    Qwen2MoTDecoderLayer,
)
from modeling.bagel.siglip_navit import SiglipEncoderLayer, SiglipVisionTransformer


class FSDPConfig:
    def __init__(
        self,
        sharding_strategy, 
        backward_prefetch, 
        cpu_offload, 
        num_replicate,
        num_shard=8,
    ):
        self.sharding_strategy = sharding_strategy
        self.backward_prefetch = backward_prefetch
        self.cpu_offload = cpu_offload
        self.num_replicate = num_replicate
        self.num_shard = num_shard


def fsdp_wrapper(original_model, fsdp_config, ignored_modules=[]):
    if fsdp_config.sharding_strategy == 'HYBRID_SHARD':
        device_mesh = init_device_mesh(
            "cuda", 
            mesh_shape=(fsdp_config.num_replicate, fsdp_config.num_shard),
            mesh_dim_names=("replicate", "shard")
        )
    else:
        device_mesh = None
    return FSDP(
        original_model,
        auto_wrap_policy=functools.partial(
            transformer_auto_wrap_policy,
            transformer_layer_cls={
                Qwen2DecoderLayer,
                Qwen2MoEDecoderLayer,
                Qwen2MoTDecoderLayer,
                SiglipEncoderLayer,
                SiglipVisionTransformer,
                MLPconnector,
                TimestepEmbedder,
                PositionEmbedding,
            },
        ),
        ignored_modules=ignored_modules,
        mixed_precision=MixedPrecision(
            param_dtype=torch.bfloat16,
            reduce_dtype=torch.bfloat16,
            buffer_dtype=torch.bfloat16,
        ),
        device_id=dist.get_rank() % torch.cuda.device_count(),
        sharding_strategy=ShardingStrategy[fsdp_config.sharding_strategy],
        backward_prefetch=BackwardPrefetch[fsdp_config.backward_prefetch],
        cpu_offload=CPUOffload(offload_params=fsdp_config.cpu_offload),
        device_mesh=device_mesh,
    )


class FSDPCheckpoint:
    @staticmethod
    def fsdp_save_ckpt(
        ckpt_dir, 
        train_steps, 
        model, 
        ema_model, 
        optimizer, 
        scheduler, 
        data_status,
        logger, 
        fsdp_config,
    ):
        save_path = os.path.join(ckpt_dir, f"{train_steps:07d}")
        os.makedirs(save_path, exist_ok=True)
        logger.info(f"Saving checkpoint to {save_path}.")

        if ema_model is not None:
            with FSDP.state_dict_type(
                ema_model,
                StateDictType.FULL_STATE_DICT,
                FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
            ):
                ema_state_dict = ema_model.state_dict()
                if dist.get_rank() == 0:
                    save_file(ema_state_dict, os.path.join(save_path, "ema.safetensors"))

        with FSDP.state_dict_type(
            model,
            StateDictType.FULL_STATE_DICT,
            FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
        ):
            model_state_dict = model.state_dict()
            if dist.get_rank() == 0:
                save_file(model_state_dict, os.path.join(save_path, "model.safetensors"))

        with FSDP.state_dict_type(model, StateDictType.LOCAL_STATE_DICT):
            if fsdp_config.sharding_strategy == "FULL_SHARD":
                shard_index = dist.get_rank()
                total_shards = dist.get_world_size()
            elif fsdp_config.sharding_strategy == "HYBRID_SHARD":
                shard_index = dist.get_rank() % fsdp_config.num_shard
                total_shards = fsdp_config.num_shard
            else:
                raise NotImplementedError

            optimizer_save_path = os.path.join(
                save_path, f"optimizer.{shard_index:05d}-of-{total_shards:05d}.pt"
            )
            if fsdp_config.sharding_strategy == "FULL_SHARD":
                torch.save(optimizer.state_dict(), optimizer_save_path)
            elif fsdp_config.sharding_strategy == "HYBRID_SHARD":
                if dist.get_rank() < fsdp_config.num_shard:
                    torch.save(optimizer.state_dict(), optimizer_save_path)
            else:
                raise NotImplementedError

        if dist.get_rank() == 0 and scheduler is not None:
            torch.save(scheduler.state_dict(), os.path.join(save_path, "scheduler.pt"))

        if dist.get_rank() == 0 and data_status is not None:
            torch.save(data_status, os.path.join(save_path, "data_status.pt"))

        dist.barrier()
        return

    @staticmethod
    def try_load_ckpt(resume_from, logger, model, ema_model=None, resume_from_ema=False):
        if resume_from is not None and os.path.exists(resume_from):
            logger.info(f"Loading checkpoint from {resume_from}.")
            if resume_from_ema:
                model_state_dict_path = os.path.join(resume_from, f"ema.safetensors")
            else:
                model_state_dict_path = os.path.join(resume_from, f"model.safetensors")
            model_state_dict = load_file(model_state_dict_path, device="cpu")
            # NOTE position embeds are fixed sinusoidal embeddings, so we can just pop it off,
            # which makes it easier to adapt to different resolutions.
            model_state_dict.pop('latent_pos_embed.pos_embed')
            model_state_dict.pop('vit_pos_embed.pos_embed')
            msg = model.load_state_dict(model_state_dict, strict=False)
            logger.info(msg)
            del model_state_dict

            if ema_model is not None:
                ema_state_dict_path = os.path.join(resume_from, f"ema.safetensors")
                if not os.path.exists(ema_state_dict_path):
                    logger.info(f"replicaing ema model from {model_state_dict_path}.")
                    ema_state_dict_path = model_state_dict_path
                ema_state_dict = load_file(ema_state_dict_path, device="cpu")
                # NOTE position embeds are fixed sinusoidal embeddings, so we can just pop it off,
                # which makes it easier to adapt to different resolutions.
                ema_state_dict.pop('latent_pos_embed.pos_embed')
                ema_state_dict.pop('vit_pos_embed.pos_embed')
                msg = ema_model.load_state_dict(ema_state_dict, strict=False)
                logger.info(msg)
                del ema_state_dict
        else:
            logger.info(f"Training from scratch.")
        return model, ema_model

    @staticmethod
    def try_load_train_state(resume_from, optimizer, scheduler, fsdp_config):
        if resume_from is not None and os.path.exists(resume_from):
            if fsdp_config.sharding_strategy == "FULL_SHARD":
                shard_index = dist.get_rank()
                total_shards = dist.get_world_size()
            elif fsdp_config.sharding_strategy == "HYBRID_SHARD":
                shard_index = dist.get_rank() % fsdp_config.num_shard
                total_shards = fsdp_config.num_shard
            else:
                raise NotImplementedError

            optimizer_state_dict_path = os.path.join(
                resume_from, f"optimizer.{shard_index:05d}-of-{total_shards:05d}.pt"
            )
            optimizer_state_dict = torch.load(optimizer_state_dict_path, map_location="cpu", weights_only=True)
            optimizer.load_state_dict(optimizer_state_dict)
            del optimizer_state_dict

            scheduler_state_dict_path = os.path.join(resume_from, "scheduler.pt")
            scheduler_state_dict = torch.load(scheduler_state_dict_path, weights_only=True, map_location="cpu")
            scheduler.load_state_dict(scheduler_state_dict)
            del scheduler_state_dict

            train_steps = int(os.path.basename(os.path.normpath(resume_from))) + 1
            """
            data_status = [
                {
                    dataset_name: {
                        worker_id: [parquet_idx, row_group_id, row_idx],
                    },
                },
            ]
            """
            data_status_path = os.path.join(resume_from, "data_status.pt")
            if os.path.exists(data_status_path):
                data_status = torch.load(data_status_path, weights_only=True, map_location="cpu")
                local_rank = dist.get_rank()
                if local_rank < len(data_status):
                    data_status = data_status[local_rank]
                else:
                    data_status = None
            else:
                data_status = None
        else:
            train_steps = 0
            data_status = None
        return optimizer, scheduler, train_steps, data_status


def grad_checkpoint_check_fn(module):
    module_options = (
        Qwen2DecoderLayer, 
        SiglipEncoderLayer, 
        MLPconnector, 
        Qwen2MoEDecoderLayer, 
        Qwen2MoTDecoderLayer
    )
    return isinstance(module, module_options)


def fsdp_ema_setup(ema_model, fsdp_config, ignored_modules=[]):
    for param in ema_model.parameters():
        param.requires_grad = False

    ema_model = fsdp_wrapper(ema_model, fsdp_config, ignored_modules=ignored_modules)
    return ema_model


@torch.no_grad()
def fsdp_ema_update(ema_model, model, decay=0.9999):
    ema_handles = traversal_utils._get_fsdp_handles(ema_model)
    new_handles = traversal_utils._get_fsdp_handles(model)
    assert len(ema_handles) == len(new_handles)
    ema_params = []
    new_params = []

    for ema_handle, new_handle in zip(ema_handles, new_handles):
        if ema_handle.flat_param is not None and new_handle.flat_param.requires_grad:
            ema_params.append(ema_handle.flat_param.data)
            new_params.append(new_handle.flat_param.data.to(dtype=ema_handle.flat_param.dtype))

    torch._foreach_mul_(ema_params, decay)
    torch._foreach_add_(ema_params, new_params, alpha=1 - decay)