Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,141 Bytes
e6af450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import functools
import os
import wandb
import yaml
from copy import deepcopy
from dataclasses import dataclass, field
from time import time
import torch
import torch.distributed as dist
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointImpl,
apply_activation_checkpointing,
checkpoint_wrapper,
)
from torch.utils.data import DataLoader
from transformers import HfArgumentParser, set_seed
from transformers.optimization import (
get_constant_schedule_with_warmup,
get_cosine_with_min_lr_schedule_with_warmup,
)
from data.dataset_base import DataConfig, PackedDataset, collate_wrapper
from data.data_utils import add_special_tokens
from modeling.autoencoder import load_ae
from modeling.bagel import (
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM, SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from train.train_utils import create_logger, get_latest_ckpt
from train.fsdp_utils import (
FSDPCheckpoint, FSDPConfig, grad_checkpoint_check_fn, fsdp_wrapper,
fsdp_ema_setup, fsdp_ema_update,
)
@dataclass
class ModelArguments:
llm_path: str = field(
default="hf/Qwen2.5-0.5B-Instruct/",
metadata={"help": "Path or HuggingFace repo ID of the pretrained Qwen2-style language model."}
)
llm_qk_norm: bool = field(
default=True,
metadata={"help": "Enable QK LayerNorm (qk_norm) inside the attention blocks."}
)
tie_word_embeddings: bool = field(
default=False,
metadata={"help": "Share input and output word embeddings (tied embeddings)."}
)
layer_module: str = field(
default="Qwen2DecoderLayer",
metadata={"help": "Python class name of the decoder layer to instantiate."}
)
vae_path: str = field(
default="flux/vae/ae.safetensors",
metadata={"help": "Path to the pretrained VAE checkpoint for latent-space image generation."}
)
vit_path: str = field(
default="hf/siglip-so400m-14-980-flash-attn2-navit/",
metadata={"help": "Path or repo ID of the SigLIP Vision Transformer used for image understanding."}
)
max_latent_size: int = field(
default=32,
metadata={"help": "Maximum latent grid size (patches per side) for the VAE latent tensor."}
)
latent_patch_size: int = field(
default=2,
metadata={"help": "Spatial size (in VAE pixels) covered by each latent patch."}
)
vit_patch_size: int = field(
default=14,
metadata={"help": "Patch size (pixels) for the Vision Transformer encoder."}
)
vit_max_num_patch_per_side: int = field(
default=70,
metadata={"help": "Maximum number of ViT patches along one image side after cropping / resize."}
)
connector_act: str = field(
default="gelu_pytorch_tanh",
metadata={"help": "Activation function used in the latent-to-text connector MLP."}
)
interpolate_pos: bool = field(
default=False,
metadata={"help": "Interpolate positional embeddings when image resolution differs from pre-training."}
)
vit_select_layer: int = field(
default=-2,
metadata={"help": "Which hidden layer of the ViT to take as the visual feature (negative = from the end)."}
)
vit_rope: bool = field(
default=False,
metadata={"help": "Replace ViT positional encodings with RoPE."}
)
text_cond_dropout_prob: float = field(
default=0.1,
metadata={"help": "Probability of dropping text embeddings during training."}
)
vae_cond_dropout_prob: float = field(
default=0.3,
metadata={"help": "Probability of dropping VAE latent inputs during training."}
)
vit_cond_dropout_prob: float = field(
default=0.3,
metadata={"help": "Probability of dropping ViT visual features during training."}
)
@dataclass
class DataArguments:
dataset_config_file: str = field(
default="data/configs/example.yaml",
metadata={"help": "YAML file specifying dataset groups, weights, and preprocessing rules."}
)
prefetch_factor: int = field(
default=2,
metadata={"help": "How many batches each DataLoader worker pre-loads in advance."}
)
num_workers: int = field(
default=4,
metadata={"help": "Number of background workers for the PyTorch DataLoader."}
)
max_num_tokens_per_sample: int = field(
default=16384,
metadata={"help": "Maximum tokens allowed in one raw sample; longer samples are skipped."}
)
max_num_tokens: int = field(
default=36864,
metadata={"help": "Hard limit on tokens in a packed batch; flush if adding a sample would exceed it."}
)
prefer_buffer_before: int = field(
default=16384,
metadata={"help": "While batch length is below this, pop from the overflow buffer before new sampling."}
)
max_buffer_size: int = field(
default=50,
metadata={"help": "Maximum number of oversized samples kept in the overflow buffer."}
)
data_seed: int = field(
default=42,
metadata={"help": "Seed used when shuffling / sampling data shards to ensure reproducibility."}
)
@dataclass
class TrainingArguments:
# --- modality switches ---
visual_gen: bool = field(
default=True,
metadata={"help": "Train image generation branch."}
)
visual_und: bool = field(
default=True,
metadata={"help": "Train image understanding branch."}
)
# --- bookkeeping & logging ---
results_dir: str = field(
default="results",
metadata={"help": "Root directory for logs."}
)
checkpoint_dir: str = field(
default="results/checkpoints",
metadata={"help": "Root directory for model checkpoints."}
)
wandb_project: str = field(
default="bagel",
metadata={"help": "Weights & Biases project name."}
)
wandb_name: str = field(
default="run",
metadata={"help": "Name shown in the Weights & Biases UI for this run."}
)
wandb_runid: str = field(
default="0",
metadata={"help": "Unique identifier to resume a previous W&B run, if desired."}
)
wandb_resume: str = field(
default="allow",
metadata={"help": "W&B resume mode: 'allow', 'must', or 'never'."}
)
wandb_offline: bool = field(
default=False,
metadata={"help": "Run W&B in offline mode (logs locally, sync later)."}
)
# --- reproducibility & resume ---
global_seed: int = field(
default=4396,
metadata={"help": "Base random seed; actual seed is offset by rank for DDP."}
)
auto_resume: bool = field(
default=False,
metadata={"help": "Automatically pick up the latest checkpoint found in checkpoint_dir."}
)
resume_from: str = field(
default=None,
metadata={"help": "Explicit checkpoint path to resume from (overrides auto_resume)." }
)
resume_model_only: bool = field(
default=False,
metadata={"help": "Load only model weights, ignoring optimizer/scheduler states."}
)
finetune_from_ema: bool = field(
default=False,
metadata={"help": "When resume_model_only=True, load the EMA (exponential moving average) weights instead of raw weights."}
)
# --- reporting frequency ---
log_every: int = field(
default=10,
metadata={"help": "Print / log every N training steps."}
)
save_every: int = field(
default=2000,
metadata={"help": "Save a checkpoint every N training steps."}
)
total_steps: int = field(
default=500_000,
metadata={"help": "Total number of optimizer steps to train for."}
)
# --- optimization & scheduler ---
warmup_steps: int = field(
default=2000,
metadata={"help": "Linear warm-up steps before applying the main LR schedule."}
)
lr_scheduler: str = field(
default="constant",
metadata={"help": "Type of LR schedule: 'constant' or 'cosine'."}
)
lr: float = field(
default=1e-4,
metadata={"help": "Peak learning rate after warm-up."}
)
min_lr: float = field(
default=1e-7,
metadata={"help": "Minimum learning rate for cosine schedule (ignored for constant)."}
)
beta1: float = field(
default=0.9,
metadata={"help": "AdamW β₁ coefficient."}
)
beta2: float = field(
default=0.95,
metadata={"help": "AdamW β₂ coefficient."}
)
eps: float = field(
default=1e-15,
metadata={"help": "AdamW ε for numerical stability."}
)
ema: float = field(
default=0.9999,
metadata={"help": "Decay rate for the exponential moving average of model weights."}
)
max_grad_norm: int = field(
default=1.0,
metadata={"help": "Gradient clipping threshold (L2 norm)."}
)
timestep_shift: float = field(
default=1.0,
metadata={"help": "Shift applied to diffusion timestep indices (for latent prediction)."}
)
mse_weight: float = field(
default=1.0,
metadata={"help": "Scaling factor for the image-reconstruction MSE loss term."}
)
ce_weight: float = field(
default=1.0,
metadata={"help": "Scaling factor for the language cross-entropy loss term."}
)
ce_loss_reweighting: bool = field(
default=False,
metadata={"help": "Reweight CE loss by token importance (provided via ce_loss_weights)."}
)
expected_num_tokens: int = field(
default=32768,
metadata={"help": "Soft target token count; yield the batch once it reaches or exceeds this size."}
)
# --- distributed training / FSDP ---
num_replicate: int = field(
default=1,
metadata={"help": "Number of model replicas per GPU rank for tensor parallelism."}
)
num_shard: int = field(
default=8,
metadata={"help": "Number of parameter shards when using FSDP HYBRID_SHARD."}
)
sharding_strategy: str = field(
default="HYBRID_SHARD",
metadata={"help": "FSDP sharding strategy: FULL_SHARD, SHARD_GRAD_OP, HYBRID_SHARD, etc."}
)
backward_prefetch: str = field(
default="BACKWARD_PRE",
metadata={"help": "FSDP backward prefetch strategy (BACKWARD_PRE or NO_PREFETCH)."}
)
cpu_offload: bool = field(
default=False,
metadata={"help": "Enable FSDP parameter offload to CPU."}
)
# --- module freezing ---
freeze_llm: bool = field(
default=False,
metadata={"help": "Keep language-model weights fixed (no gradient updates)."}
)
freeze_vit: bool = field(
default=False,
metadata={"help": "Keep ViT weights fixed during training."}
)
freeze_vae: bool = field(
default=True,
metadata={"help": "Keep VAE weights fixed; only predict latents, don’t fine-tune encoder/decoder."}
)
freeze_und: bool = field(
default=False,
metadata={"help": "Freeze the visual understanding connector layers."}
)
copy_init_moe: bool = field(
default=True,
metadata={"help": "Duplicate initial MoE experts so each has identical initialisation."}
)
use_flex: bool = field(
default=False,
metadata={"help": "Enable FLEX (flash-ext friendly) packing algorithm for sequence data."}
)
def main():
assert torch.cuda.is_available()
dist.init_process_group("nccl")
device = dist.get_rank() % torch.cuda.device_count()
torch.cuda.set_device(device)
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging:
if dist.get_rank() == 0:
os.makedirs(training_args.results_dir, exist_ok=True)
os.makedirs(training_args.checkpoint_dir, exist_ok=True)
logger = create_logger(training_args.results_dir, dist.get_rank())
wandb.init(
project=training_args.wandb_project,
id=f"{training_args.wandb_name}-run{training_args.wandb_runid}",
name=training_args.wandb_name,
resume=training_args.wandb_resume,
mode="offline" if training_args.wandb_offline else "online"
)
wandb.config.update(training_args)
wandb.config.update(model_args)
wandb.config.update(data_args)
else:
logger = create_logger(None, dist.get_rank())
dist.barrier()
logger.info(f'Training arguments {training_args}')
logger.info(f'Model arguments {model_args}')
logger.info(f'Data arguments {data_args}')
# prepare auto resume logic:
if training_args.auto_resume:
resume_from = get_latest_ckpt(training_args.checkpoint_dir)
if resume_from is None:
resume_from = training_args.resume_from
resume_model_only = training_args.resume_model_only
if resume_model_only:
finetune_from_ema = training_args.finetune_from_ema
else:
finetune_from_ema = False
else:
resume_model_only = False
finetune_from_ema = False
else:
resume_from = training_args.resume_from
resume_model_only = training_args.resume_model_only
if resume_model_only:
finetune_from_ema = training_args.finetune_from_ema
else:
finetune_from_ema = False
# Set seed:
seed = training_args.global_seed * dist.get_world_size() + dist.get_rank()
set_seed(seed)
# Setup model:
llm_config = Qwen2Config.from_pretrained(model_args.llm_path)
llm_config.layer_module = model_args.layer_module
llm_config.qk_norm = model_args.llm_qk_norm
llm_config.tie_word_embeddings = model_args.tie_word_embeddings
llm_config.freeze_und = training_args.freeze_und
language_model = Qwen2ForCausalLM.from_pretrained(model_args.llm_path, config=llm_config)
if training_args.copy_init_moe:
language_model.init_moe()
if training_args.visual_und:
vit_config = SiglipVisionConfig.from_pretrained(model_args.vit_path)
vit_config.num_hidden_layers = vit_config.num_hidden_layers + 1 + model_args.vit_select_layer
vit_config.rope = model_args.vit_rope
vit_model = SiglipVisionModel.from_pretrained(model_args.vit_path, config=vit_config)
if training_args.visual_gen:
vae_model, vae_config = load_ae(local_path=model_args.vae_path)
config = BagelConfig(
visual_gen=training_args.visual_gen,
visual_und=training_args.visual_und,
llm_config=llm_config,
vit_config=vit_config if training_args.visual_und else None,
vae_config=vae_config if training_args.visual_gen else None,
latent_patch_size=model_args.latent_patch_size,
max_latent_size=model_args.max_latent_size,
vit_max_num_patch_per_side=model_args.vit_max_num_patch_per_side,
connector_act=model_args.connector_act,
interpolate_pos=model_args.interpolate_pos,
timestep_shift=training_args.timestep_shift,
)
model = Bagel(
language_model,
vit_model if training_args.visual_und else None,
config
)
if training_args.visual_und:
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config)
# Setup tokenizer for model:
tokenizer = Qwen2Tokenizer.from_pretrained(model_args.llm_path)
tokenizer, new_token_ids, num_new_tokens = add_special_tokens(tokenizer)
if num_new_tokens > 0:
model.language_model.resize_token_embeddings(len(tokenizer))
model.config.llm_config.vocab_size = len(tokenizer)
model.language_model.config.vocab_size = len(tokenizer)
# maybe freeze something:
if training_args.freeze_vae and training_args.visual_gen:
for param in vae_model.parameters():
param.requires_grad = False
if training_args.freeze_llm:
model.language_model.eval()
for param in model.language_model.parameters():
param.requires_grad = False
if training_args.freeze_vit and training_args.visual_und:
model.vit_model.eval()
for param in model.vit_model.parameters():
param.requires_grad = False
# Setup FSDP and load pretrained model:
fsdp_config = FSDPConfig(
sharding_strategy=training_args.sharding_strategy,
backward_prefetch=training_args.backward_prefetch,
cpu_offload=training_args.cpu_offload,
num_replicate=training_args.num_replicate,
num_shard=training_args.num_shard,
)
ema_model = deepcopy(model)
model, ema_model = FSDPCheckpoint.try_load_ckpt(
resume_from, logger, model, ema_model, resume_from_ema=finetune_from_ema
)
ema_model = fsdp_ema_setup(ema_model, fsdp_config)
fsdp_model = fsdp_wrapper(model, fsdp_config)
apply_activation_checkpointing(
fsdp_model,
checkpoint_wrapper_fn=functools.partial(
checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT
),
check_fn=grad_checkpoint_check_fn
)
if dist.get_rank() == 0:
print(fsdp_model)
for name, param in model.named_parameters():
print(name, param.requires_grad)
# Setup optimizer and scheduler
optimizer = torch.optim.AdamW(
fsdp_model.parameters(),
lr=training_args.lr,
betas=(training_args.beta1, training_args.beta2),
eps=training_args.eps,
weight_decay=0
)
if training_args.lr_scheduler == 'cosine':
scheduler = get_cosine_with_min_lr_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=training_args.warmup_steps,
num_training_steps=training_args.total_steps,
min_lr=training_args.min_lr,
)
elif training_args.lr_scheduler == 'constant':
scheduler = get_constant_schedule_with_warmup(
optimizer=optimizer, num_warmup_steps=training_args.warmup_steps
)
else:
raise ValueError
# maybe resume optimizer, scheduler, and train_steps
if resume_model_only:
train_step = 0
data_status = None
else:
optimizer, scheduler, train_step, data_status = FSDPCheckpoint.try_load_train_state(
resume_from, optimizer, scheduler, fsdp_config,
)
# Setup packed dataloader
with open(data_args.dataset_config_file, "r") as stream:
dataset_meta = yaml.safe_load(stream)
dataset_config = DataConfig(grouped_datasets=dataset_meta)
if training_args.visual_und:
dataset_config.vit_patch_size = model_args.vit_patch_size
dataset_config.max_num_patch_per_side = model_args.vit_max_num_patch_per_side
if training_args.visual_gen:
vae_image_downsample = model_args.latent_patch_size * vae_config.downsample
dataset_config.vae_image_downsample = vae_image_downsample
dataset_config.max_latent_size = model_args.max_latent_size
dataset_config.text_cond_dropout_prob = model_args.text_cond_dropout_prob
dataset_config.vae_cond_dropout_prob = model_args.vae_cond_dropout_prob
dataset_config.vit_cond_dropout_prob = model_args.vit_cond_dropout_prob
train_dataset = PackedDataset(
dataset_config,
tokenizer=tokenizer,
special_tokens=new_token_ids,
local_rank=dist.get_rank(),
world_size=dist.get_world_size(),
num_workers=data_args.num_workers,
expected_num_tokens=training_args.expected_num_tokens,
max_num_tokens_per_sample=data_args.max_num_tokens_per_sample,
max_num_tokens=data_args.max_num_tokens,
max_buffer_size=data_args.max_buffer_size,
prefer_buffer_before=data_args.prefer_buffer_before,
interpolate_pos=model_args.interpolate_pos,
use_flex=training_args.use_flex,
data_status=data_status,
)
train_dataset.set_epoch(data_args.data_seed)
train_loader = DataLoader(
train_dataset,
batch_size=1, # batch size is 1 packed dataset
num_workers=data_args.num_workers,
pin_memory=True,
collate_fn=collate_wrapper(),
drop_last=True,
prefetch_factor=data_args.prefetch_factor,
)
# Prepare models for training:
if training_args.visual_gen:
vae_model.to(device).eval()
fsdp_model.train()
ema_model.eval()
# train loop
start_time = time()
logger.info(f"Training for {training_args.total_steps} steps, starting at {train_step}...")
for curr_step, data in enumerate(train_loader, start=train_step):
data = data.cuda(device).to_dict()
data_indexes = data.pop('batch_data_indexes', None)
ce_loss_weights = data.pop('ce_loss_weights', None)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
if training_args.visual_gen:
with torch.no_grad():
data['padded_latent'] = vae_model.encode(data.pop('padded_images'))
loss_dict = fsdp_model(**data)
loss = 0
ce = loss_dict["ce"]
if ce is not None:
total_ce_tokens = torch.tensor(len(data['ce_loss_indexes']), device=device)
dist.all_reduce(total_ce_tokens, op=dist.ReduceOp.SUM)
if training_args.ce_loss_reweighting:
ce = ce * ce_loss_weights
total_ce_loss_weights = ce_loss_weights.sum()
dist.all_reduce(total_ce_loss_weights, op=dist.ReduceOp.SUM)
ce = ce.sum() * dist.get_world_size() / total_ce_loss_weights
else:
ce = ce.sum() * dist.get_world_size() / total_ce_tokens
loss_dict["ce"] = ce.detach()
loss = loss + ce * training_args.ce_weight
else:
assert not training_args.visual_und
loss_dict["ce"] = torch.tensor(0, device=device)
total_ce_tokens = torch.tensor(0, device=device)
if training_args.visual_gen:
mse = loss_dict["mse"]
total_mse_tokens = torch.tensor(len(data['mse_loss_indexes']), device=device)
dist.all_reduce(total_mse_tokens, op=dist.ReduceOp.SUM)
mse = mse.mean(dim=-1).sum() * dist.get_world_size() / total_mse_tokens
loss_dict["mse"] = mse.detach()
loss = loss + mse * training_args.mse_weight
else:
assert not training_args.visual_gen
loss_dict["mse"] = torch.tensor(0, device=device)
total_mse_tokens = torch.tensor(0, device=device)
optimizer.zero_grad()
loss.backward()
total_norm = fsdp_model.clip_grad_norm_(training_args.max_grad_norm)
optimizer.step()
scheduler.step()
fsdp_ema_update(ema_model, fsdp_model, decay=training_args.ema)
# Log loss values:
if curr_step % training_args.log_every == 0:
total_samples = torch.tensor(len(data['sample_lens']), device=device)
dist.all_reduce(total_samples, op=dist.ReduceOp.SUM)
# Measure training speed:
torch.cuda.synchronize()
end_time = time()
steps_per_sec = training_args.log_every / (end_time - start_time)
message = f"(step={curr_step:07d}) "
wandb_log = {}
for key, value in loss_dict.items():
# Reduce loss history over all processes:
avg_loss = torch.tensor(value.item(), device=device)
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
avg_loss = avg_loss.item() / dist.get_world_size()
message += f"Train Loss {key}: {avg_loss:.4f}, "
wandb_log[key] = avg_loss
message += f"Train Steps/Sec: {steps_per_sec:.2f}, "
logger.info(message)
wandb_log['lr'] = optimizer.param_groups[0]['lr']
wandb_log['total_mse_tokens'] = total_mse_tokens.item()
wandb_log['total_ce_tokens'] = total_ce_tokens.item()
wandb_log['total_norm'] = total_norm.item()
wandb_log['total_samples'] = total_samples.item()
mem_allocated = torch.tensor(torch.cuda.max_memory_allocated() / 1024**2, device=device)
dist.all_reduce(mem_allocated, op=dist.ReduceOp.MAX)
wandb_log['mem_allocated'] = mem_allocated
mem_cache = torch.tensor(torch.cuda.max_memory_reserved() / 1024**2, device=device)
dist.all_reduce(mem_cache, op=dist.ReduceOp.MAX)
wandb_log['mem_cache'] = mem_cache
if dist.get_rank() == 0:
wandb.log(wandb_log, step=curr_step)
start_time = time()
if data_status is None:
data_status = {}
for item in data_indexes:
if item['dataset_name'] not in data_status.keys():
data_status[item['dataset_name']] = {}
data_status[item['dataset_name']][item['worker_id']] = item['data_indexes']
if curr_step > 0 and curr_step % training_args.save_every == 0:
if dist.get_rank() == 0:
gather_list = [None] * dist.get_world_size()
else:
gather_list = None
dist.gather_object(data_status, gather_list, dst=0)
FSDPCheckpoint.fsdp_save_ckpt(
ckpt_dir=training_args.checkpoint_dir,
train_steps=curr_step,
model=fsdp_model,
ema_model=ema_model,
optimizer=optimizer,
scheduler=scheduler,
logger=logger,
fsdp_config=fsdp_config,
data_status=gather_list
)
logger.info("Done!")
if dist.get_rank() == 0:
wandb.finish()
dist.destroy_process_group()
if __name__ == "__main__":
main()
|