File size: 26,141 Bytes
e6af450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0

import functools
import os
import wandb
import yaml
from copy import deepcopy
from dataclasses import dataclass, field
from time import time

import torch
import torch.distributed as dist
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    CheckpointImpl,
    apply_activation_checkpointing,
    checkpoint_wrapper,
)
from torch.utils.data import DataLoader
from transformers import HfArgumentParser, set_seed
from transformers.optimization import (
    get_constant_schedule_with_warmup,
    get_cosine_with_min_lr_schedule_with_warmup,
)

from data.dataset_base import DataConfig, PackedDataset, collate_wrapper
from data.data_utils import add_special_tokens
from modeling.autoencoder import load_ae
from modeling.bagel import (
    BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM, SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from train.train_utils import create_logger, get_latest_ckpt
from train.fsdp_utils import (
    FSDPCheckpoint, FSDPConfig, grad_checkpoint_check_fn, fsdp_wrapper, 
    fsdp_ema_setup, fsdp_ema_update,
)


@dataclass
class ModelArguments:
    llm_path: str = field(
        default="hf/Qwen2.5-0.5B-Instruct/",
        metadata={"help": "Path or HuggingFace repo ID of the pretrained Qwen2-style language model."}
    )
    llm_qk_norm: bool = field(
        default=True,
        metadata={"help": "Enable QK LayerNorm (qk_norm) inside the attention blocks."}
    )
    tie_word_embeddings: bool = field(
        default=False,
        metadata={"help": "Share input and output word embeddings (tied embeddings)."}
    )
    layer_module: str = field(
        default="Qwen2DecoderLayer",
        metadata={"help": "Python class name of the decoder layer to instantiate."}
    )
    vae_path: str = field(
        default="flux/vae/ae.safetensors",
        metadata={"help": "Path to the pretrained VAE checkpoint for latent-space image generation."}
    )
    vit_path: str = field(
        default="hf/siglip-so400m-14-980-flash-attn2-navit/",
        metadata={"help": "Path or repo ID of the SigLIP Vision Transformer used for image understanding."}
    )
    max_latent_size: int = field(
        default=32,
        metadata={"help": "Maximum latent grid size (patches per side) for the VAE latent tensor."}
    )
    latent_patch_size: int = field(
        default=2,
        metadata={"help": "Spatial size (in VAE pixels) covered by each latent patch."}
    )
    vit_patch_size: int = field(
        default=14,
        metadata={"help": "Patch size (pixels) for the Vision Transformer encoder."}
    )
    vit_max_num_patch_per_side: int = field(
        default=70,
        metadata={"help": "Maximum number of ViT patches along one image side after cropping / resize."}
    )
    connector_act: str = field(
        default="gelu_pytorch_tanh",
        metadata={"help": "Activation function used in the latent-to-text connector MLP."}
    )
    interpolate_pos: bool = field(
        default=False,
        metadata={"help": "Interpolate positional embeddings when image resolution differs from pre-training."}
    )
    vit_select_layer: int = field(
        default=-2,
        metadata={"help": "Which hidden layer of the ViT to take as the visual feature (negative = from the end)."}
    )
    vit_rope: bool = field(
        default=False,
        metadata={"help": "Replace ViT positional encodings with RoPE."}
    )

    text_cond_dropout_prob: float = field(
        default=0.1,
        metadata={"help": "Probability of dropping text embeddings during training."}
    )
    vae_cond_dropout_prob: float = field(
        default=0.3,
        metadata={"help": "Probability of dropping VAE latent inputs during training."}
    )
    vit_cond_dropout_prob: float = field(
        default=0.3,
        metadata={"help": "Probability of dropping ViT visual features during training."}
    )


@dataclass
class DataArguments:
    dataset_config_file: str = field(
        default="data/configs/example.yaml",
        metadata={"help": "YAML file specifying dataset groups, weights, and preprocessing rules."}
    )
    prefetch_factor: int = field(
        default=2,
        metadata={"help": "How many batches each DataLoader worker pre-loads in advance."}
    )
    num_workers: int = field(
        default=4,
        metadata={"help": "Number of background workers for the PyTorch DataLoader."}
    )
    max_num_tokens_per_sample: int = field(
        default=16384,
        metadata={"help": "Maximum tokens allowed in one raw sample; longer samples are skipped."}
    )
    max_num_tokens: int = field(
        default=36864,
        metadata={"help": "Hard limit on tokens in a packed batch; flush if adding a sample would exceed it."}
    )
    prefer_buffer_before: int = field(
        default=16384,
        metadata={"help": "While batch length is below this, pop from the overflow buffer before new sampling."}
    )
    max_buffer_size: int = field(
        default=50,
        metadata={"help": "Maximum number of oversized samples kept in the overflow buffer."}
    )
    data_seed: int = field(
        default=42,
        metadata={"help": "Seed used when shuffling / sampling data shards to ensure reproducibility."}
    )


@dataclass
class TrainingArguments:
    # --- modality switches ---
    visual_gen: bool = field(
        default=True,
        metadata={"help": "Train image generation branch."}
    )
    visual_und: bool = field(
        default=True,
        metadata={"help": "Train image understanding branch."}
    )

    # --- bookkeeping & logging ---
    results_dir: str = field(
        default="results",
        metadata={"help": "Root directory for logs."}
    )
    checkpoint_dir: str = field(
        default="results/checkpoints",
        metadata={"help": "Root directory for model checkpoints."}
    )
    wandb_project: str = field(
        default="bagel",
        metadata={"help": "Weights & Biases project name."}
    )
    wandb_name: str = field(
        default="run",
        metadata={"help": "Name shown in the Weights & Biases UI for this run."}
    )
    wandb_runid: str = field(
        default="0",
        metadata={"help": "Unique identifier to resume a previous W&B run, if desired."}
    )
    wandb_resume: str = field(
        default="allow",
        metadata={"help": "W&B resume mode: 'allow', 'must', or 'never'."}
    )
    wandb_offline: bool = field(
        default=False,
        metadata={"help": "Run W&B in offline mode (logs locally, sync later)."}
    )

    # --- reproducibility & resume ---
    global_seed: int = field(
        default=4396,
        metadata={"help": "Base random seed; actual seed is offset by rank for DDP."}
    )
    auto_resume: bool = field(
        default=False,
        metadata={"help": "Automatically pick up the latest checkpoint found in checkpoint_dir."}
    )
    resume_from: str = field(
        default=None,
        metadata={"help": "Explicit checkpoint path to resume from (overrides auto_resume)." }
    )
    resume_model_only: bool = field(
        default=False,
        metadata={"help": "Load only model weights, ignoring optimizer/scheduler states."}
    )
    finetune_from_ema: bool = field(
        default=False,
        metadata={"help": "When resume_model_only=True, load the EMA (exponential moving average) weights instead of raw weights."}
    )

    # --- reporting frequency ---
    log_every: int = field(
        default=10,
        metadata={"help": "Print / log every N training steps."}
    )
    save_every: int = field(
        default=2000,
        metadata={"help": "Save a checkpoint every N training steps."}
    )
    total_steps: int = field(
        default=500_000,
        metadata={"help": "Total number of optimizer steps to train for."}
    )

    # --- optimization & scheduler ---
    warmup_steps: int = field(
        default=2000,
        metadata={"help": "Linear warm-up steps before applying the main LR schedule."}
    )
    lr_scheduler: str = field(
        default="constant",
        metadata={"help": "Type of LR schedule: 'constant' or 'cosine'."}
    )
    lr: float = field(
        default=1e-4,
        metadata={"help": "Peak learning rate after warm-up."}
    )
    min_lr: float = field(
        default=1e-7,
        metadata={"help": "Minimum learning rate for cosine schedule (ignored for constant)."}
    )
    beta1: float = field(
        default=0.9,
        metadata={"help": "AdamW β₁ coefficient."}
    )
    beta2: float = field(
        default=0.95,
        metadata={"help": "AdamW β₂ coefficient."}
    )
    eps: float = field(
        default=1e-15,
        metadata={"help": "AdamW ε for numerical stability."}
    )
    ema: float = field(
        default=0.9999,
        metadata={"help": "Decay rate for the exponential moving average of model weights."}
    )
    max_grad_norm: int = field(
        default=1.0,
        metadata={"help": "Gradient clipping threshold (L2 norm)."}
    )
    timestep_shift: float = field(
        default=1.0,
        metadata={"help": "Shift applied to diffusion timestep indices (for latent prediction)."}
    )
    mse_weight: float = field(
        default=1.0,
        metadata={"help": "Scaling factor for the image-reconstruction MSE loss term."}
    )
    ce_weight: float = field(
        default=1.0,
        metadata={"help": "Scaling factor for the language cross-entropy loss term."}
    )
    ce_loss_reweighting: bool = field(
        default=False,
        metadata={"help": "Reweight CE loss by token importance (provided via ce_loss_weights)."}
    )
    expected_num_tokens: int = field(
        default=32768,
        metadata={"help": "Soft target token count; yield the batch once it reaches or exceeds this size."}
    )

    # --- distributed training / FSDP ---
    num_replicate: int = field(
        default=1,
        metadata={"help": "Number of model replicas per GPU rank for tensor parallelism."}
    )
    num_shard: int = field(
        default=8,
        metadata={"help": "Number of parameter shards when using FSDP HYBRID_SHARD."}
    )
    sharding_strategy: str = field(
        default="HYBRID_SHARD",
        metadata={"help": "FSDP sharding strategy: FULL_SHARD, SHARD_GRAD_OP, HYBRID_SHARD, etc."}
    )
    backward_prefetch: str = field(
        default="BACKWARD_PRE",
        metadata={"help": "FSDP backward prefetch strategy (BACKWARD_PRE or NO_PREFETCH)."}
    )
    cpu_offload: bool = field(
        default=False,
        metadata={"help": "Enable FSDP parameter offload to CPU."}
    )

    # --- module freezing ---
    freeze_llm: bool = field(
        default=False,
        metadata={"help": "Keep language-model weights fixed (no gradient updates)."}
    )
    freeze_vit: bool = field(
        default=False,
        metadata={"help": "Keep ViT weights fixed during training."}
    )
    freeze_vae: bool = field(
        default=True,
        metadata={"help": "Keep VAE weights fixed; only predict latents, don’t fine-tune encoder/decoder."}
    )
    freeze_und: bool = field(
        default=False,
        metadata={"help": "Freeze the visual understanding connector layers."}
    )
    copy_init_moe: bool = field(
        default=True,
        metadata={"help": "Duplicate initial MoE experts so each has identical initialisation."}
    )
    use_flex: bool = field(
        default=False,
        metadata={"help": "Enable FLEX (flash-ext friendly) packing algorithm for sequence data."}
    )


def main():
    assert torch.cuda.is_available()
    dist.init_process_group("nccl")
    device = dist.get_rank() % torch.cuda.device_count()
    torch.cuda.set_device(device)
    parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging:
    if dist.get_rank() == 0:
        os.makedirs(training_args.results_dir, exist_ok=True)
        os.makedirs(training_args.checkpoint_dir, exist_ok=True)
        logger = create_logger(training_args.results_dir, dist.get_rank())
        wandb.init(
            project=training_args.wandb_project, 
            id=f"{training_args.wandb_name}-run{training_args.wandb_runid}", 
            name=training_args.wandb_name, 
            resume=training_args.wandb_resume,
            mode="offline" if training_args.wandb_offline else "online"
        )
        wandb.config.update(training_args)
        wandb.config.update(model_args)
        wandb.config.update(data_args)
    else:
        logger = create_logger(None, dist.get_rank())
    dist.barrier()
    logger.info(f'Training arguments {training_args}')
    logger.info(f'Model arguments {model_args}')
    logger.info(f'Data arguments {data_args}')

    # prepare auto resume logic:
    if training_args.auto_resume:
        resume_from = get_latest_ckpt(training_args.checkpoint_dir)
        if resume_from is None:
            resume_from = training_args.resume_from
            resume_model_only = training_args.resume_model_only
            if resume_model_only:
                finetune_from_ema = training_args.finetune_from_ema
            else:
                finetune_from_ema = False
        else:
            resume_model_only = False
            finetune_from_ema = False
    else:
        resume_from = training_args.resume_from
        resume_model_only = training_args.resume_model_only
        if resume_model_only:
            finetune_from_ema = training_args.finetune_from_ema
        else:
            finetune_from_ema = False

    # Set seed:
    seed = training_args.global_seed * dist.get_world_size() + dist.get_rank()
    set_seed(seed)

    # Setup model:
    llm_config = Qwen2Config.from_pretrained(model_args.llm_path)
    llm_config.layer_module = model_args.layer_module
    llm_config.qk_norm = model_args.llm_qk_norm
    llm_config.tie_word_embeddings = model_args.tie_word_embeddings
    llm_config.freeze_und = training_args.freeze_und
    language_model = Qwen2ForCausalLM.from_pretrained(model_args.llm_path, config=llm_config)
    if training_args.copy_init_moe:
        language_model.init_moe()

    if training_args.visual_und:
        vit_config = SiglipVisionConfig.from_pretrained(model_args.vit_path)
        vit_config.num_hidden_layers = vit_config.num_hidden_layers + 1 + model_args.vit_select_layer
        vit_config.rope = model_args.vit_rope
        vit_model = SiglipVisionModel.from_pretrained(model_args.vit_path, config=vit_config)

    if training_args.visual_gen:
        vae_model, vae_config = load_ae(local_path=model_args.vae_path)

    config = BagelConfig(
        visual_gen=training_args.visual_gen,
        visual_und=training_args.visual_und,
        llm_config=llm_config, 
        vit_config=vit_config if training_args.visual_und else None,
        vae_config=vae_config if training_args.visual_gen else None,
        latent_patch_size=model_args.latent_patch_size,
        max_latent_size=model_args.max_latent_size,
        vit_max_num_patch_per_side=model_args.vit_max_num_patch_per_side,
        connector_act=model_args.connector_act,
        interpolate_pos=model_args.interpolate_pos,
        timestep_shift=training_args.timestep_shift,
    )
    model = Bagel(
        language_model, 
        vit_model if training_args.visual_und else None, 
        config
    )

    if training_args.visual_und:
        model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config)

    # Setup tokenizer for model:
    tokenizer = Qwen2Tokenizer.from_pretrained(model_args.llm_path)
    tokenizer, new_token_ids, num_new_tokens = add_special_tokens(tokenizer)
    if num_new_tokens > 0:
        model.language_model.resize_token_embeddings(len(tokenizer))
        model.config.llm_config.vocab_size = len(tokenizer)
        model.language_model.config.vocab_size = len(tokenizer)

    # maybe freeze something:
    if training_args.freeze_vae and training_args.visual_gen:
        for param in vae_model.parameters():
            param.requires_grad = False
    if training_args.freeze_llm:
        model.language_model.eval()
        for param in model.language_model.parameters():
            param.requires_grad = False
    if training_args.freeze_vit and training_args.visual_und:
        model.vit_model.eval()
        for param in model.vit_model.parameters():
            param.requires_grad = False

    # Setup FSDP and load pretrained model:
    fsdp_config = FSDPConfig(
        sharding_strategy=training_args.sharding_strategy,
        backward_prefetch=training_args.backward_prefetch,
        cpu_offload=training_args.cpu_offload,
        num_replicate=training_args.num_replicate,
        num_shard=training_args.num_shard,
    )
    ema_model = deepcopy(model)
    model, ema_model = FSDPCheckpoint.try_load_ckpt(
        resume_from, logger, model, ema_model, resume_from_ema=finetune_from_ema
    )
    ema_model = fsdp_ema_setup(ema_model, fsdp_config)
    fsdp_model = fsdp_wrapper(model, fsdp_config)
    apply_activation_checkpointing(
        fsdp_model, 
        checkpoint_wrapper_fn=functools.partial(
            checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT
        ), 
        check_fn=grad_checkpoint_check_fn
    )

    if dist.get_rank() == 0:
        print(fsdp_model)
        for name, param in model.named_parameters():
            print(name, param.requires_grad)

    # Setup optimizer and scheduler
    optimizer = torch.optim.AdamW(
        fsdp_model.parameters(), 
        lr=training_args.lr, 
        betas=(training_args.beta1, training_args.beta2), 
        eps=training_args.eps, 
        weight_decay=0
    )
    if training_args.lr_scheduler == 'cosine':
        scheduler = get_cosine_with_min_lr_schedule_with_warmup(
            optimizer=optimizer,
            num_warmup_steps=training_args.warmup_steps,
            num_training_steps=training_args.total_steps,
            min_lr=training_args.min_lr,
        )
    elif training_args.lr_scheduler == 'constant':
        scheduler = get_constant_schedule_with_warmup(
            optimizer=optimizer, num_warmup_steps=training_args.warmup_steps
        )
    else:
        raise ValueError

    # maybe resume optimizer, scheduler, and train_steps
    if resume_model_only:
        train_step = 0
        data_status = None
    else:
        optimizer, scheduler, train_step, data_status = FSDPCheckpoint.try_load_train_state(
            resume_from, optimizer, scheduler, fsdp_config, 
        )

    # Setup packed dataloader
    with open(data_args.dataset_config_file, "r") as stream:
        dataset_meta = yaml.safe_load(stream)
    dataset_config = DataConfig(grouped_datasets=dataset_meta)
    if training_args.visual_und:
        dataset_config.vit_patch_size = model_args.vit_patch_size
        dataset_config.max_num_patch_per_side = model_args.vit_max_num_patch_per_side
    if training_args.visual_gen:
        vae_image_downsample = model_args.latent_patch_size * vae_config.downsample
        dataset_config.vae_image_downsample = vae_image_downsample
        dataset_config.max_latent_size = model_args.max_latent_size
        dataset_config.text_cond_dropout_prob = model_args.text_cond_dropout_prob
        dataset_config.vae_cond_dropout_prob = model_args.vae_cond_dropout_prob
        dataset_config.vit_cond_dropout_prob = model_args.vit_cond_dropout_prob
    train_dataset = PackedDataset(
        dataset_config,
        tokenizer=tokenizer,
        special_tokens=new_token_ids,
        local_rank=dist.get_rank(),
        world_size=dist.get_world_size(),
        num_workers=data_args.num_workers,
        expected_num_tokens=training_args.expected_num_tokens,
        max_num_tokens_per_sample=data_args.max_num_tokens_per_sample,
        max_num_tokens=data_args.max_num_tokens,
        max_buffer_size=data_args.max_buffer_size,
        prefer_buffer_before=data_args.prefer_buffer_before,
        interpolate_pos=model_args.interpolate_pos,
        use_flex=training_args.use_flex,
        data_status=data_status,
    )
    train_dataset.set_epoch(data_args.data_seed)
    train_loader = DataLoader(
        train_dataset,
        batch_size=1, # batch size is 1 packed dataset
        num_workers=data_args.num_workers,
        pin_memory=True,
        collate_fn=collate_wrapper(),
        drop_last=True,
        prefetch_factor=data_args.prefetch_factor,
    )

    # Prepare models for training:
    if training_args.visual_gen:
        vae_model.to(device).eval()
    fsdp_model.train()
    ema_model.eval()

    # train loop
    start_time = time()
    logger.info(f"Training for {training_args.total_steps} steps, starting at {train_step}...")
    for curr_step, data in enumerate(train_loader, start=train_step):
        data = data.cuda(device).to_dict()
        data_indexes = data.pop('batch_data_indexes', None)
        ce_loss_weights = data.pop('ce_loss_weights', None)
        with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
            if training_args.visual_gen:
                with torch.no_grad():
                    data['padded_latent'] = vae_model.encode(data.pop('padded_images'))
            loss_dict = fsdp_model(**data)

        loss = 0
        ce = loss_dict["ce"]
        if ce is not None:
            total_ce_tokens = torch.tensor(len(data['ce_loss_indexes']), device=device)
            dist.all_reduce(total_ce_tokens, op=dist.ReduceOp.SUM)
            if training_args.ce_loss_reweighting:
                ce = ce * ce_loss_weights
                total_ce_loss_weights = ce_loss_weights.sum()
                dist.all_reduce(total_ce_loss_weights, op=dist.ReduceOp.SUM)
                ce = ce.sum() * dist.get_world_size() / total_ce_loss_weights
            else:
                ce = ce.sum() * dist.get_world_size() / total_ce_tokens
            loss_dict["ce"] = ce.detach()
            loss = loss + ce * training_args.ce_weight
        else:
            assert not training_args.visual_und
            loss_dict["ce"] = torch.tensor(0, device=device)
            total_ce_tokens = torch.tensor(0, device=device)

        if training_args.visual_gen:
            mse = loss_dict["mse"]
            total_mse_tokens = torch.tensor(len(data['mse_loss_indexes']), device=device)
            dist.all_reduce(total_mse_tokens, op=dist.ReduceOp.SUM)
            mse = mse.mean(dim=-1).sum() * dist.get_world_size() / total_mse_tokens
            loss_dict["mse"] = mse.detach()
            loss = loss + mse * training_args.mse_weight
        else:
            assert not training_args.visual_gen
            loss_dict["mse"] = torch.tensor(0, device=device)
            total_mse_tokens = torch.tensor(0, device=device)

        optimizer.zero_grad()
        loss.backward()
        total_norm = fsdp_model.clip_grad_norm_(training_args.max_grad_norm)
        optimizer.step()
        scheduler.step()
        fsdp_ema_update(ema_model, fsdp_model, decay=training_args.ema)

        # Log loss values:
        if curr_step % training_args.log_every == 0:
            total_samples = torch.tensor(len(data['sample_lens']), device=device)
            dist.all_reduce(total_samples, op=dist.ReduceOp.SUM)

            # Measure training speed:
            torch.cuda.synchronize()
            end_time = time()
            steps_per_sec = training_args.log_every / (end_time - start_time)
            message = f"(step={curr_step:07d}) "
            wandb_log = {}
            for key, value in loss_dict.items():
                # Reduce loss history over all processes:
                avg_loss = torch.tensor(value.item(), device=device)
                dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
                avg_loss = avg_loss.item() / dist.get_world_size()
                message += f"Train Loss {key}: {avg_loss:.4f}, "
                wandb_log[key] = avg_loss
            message += f"Train Steps/Sec: {steps_per_sec:.2f}, "
            logger.info(message)

            wandb_log['lr'] = optimizer.param_groups[0]['lr']
            wandb_log['total_mse_tokens'] = total_mse_tokens.item()
            wandb_log['total_ce_tokens'] = total_ce_tokens.item()
            wandb_log['total_norm'] = total_norm.item()
            wandb_log['total_samples'] = total_samples.item()

            mem_allocated = torch.tensor(torch.cuda.max_memory_allocated() / 1024**2, device=device)
            dist.all_reduce(mem_allocated, op=dist.ReduceOp.MAX)
            wandb_log['mem_allocated'] = mem_allocated
            mem_cache = torch.tensor(torch.cuda.max_memory_reserved() / 1024**2, device=device)
            dist.all_reduce(mem_cache, op=dist.ReduceOp.MAX)
            wandb_log['mem_cache'] = mem_cache

            if dist.get_rank() == 0:
                wandb.log(wandb_log, step=curr_step)
            start_time = time()

        if data_status is None:
            data_status = {}
        for item in data_indexes:
            if item['dataset_name'] not in data_status.keys():
                data_status[item['dataset_name']] = {}
            data_status[item['dataset_name']][item['worker_id']] = item['data_indexes']

        if curr_step > 0 and curr_step % training_args.save_every == 0:
            if dist.get_rank() == 0:
                gather_list = [None] * dist.get_world_size()
            else:
                gather_list = None
            dist.gather_object(data_status, gather_list, dst=0)

            FSDPCheckpoint.fsdp_save_ckpt(
                ckpt_dir=training_args.checkpoint_dir, 
                train_steps=curr_step, 
                model=fsdp_model, 
                ema_model=ema_model, 
                optimizer=optimizer, 
                scheduler=scheduler, 
                logger=logger,
                fsdp_config=fsdp_config,
                data_status=gather_list
            )

    logger.info("Done!")
    if dist.get_rank() == 0:
        wandb.finish()
    dist.destroy_process_group()


if __name__ == "__main__":
    main()