Bagel-7B-Demo / app.py
KingNish's picture
Update app.py
0c38e11 verified
raw
history blame
28.8 kB
import spaces
import gradio as gr
import numpy as np
import os
import torch
import random
import subprocess
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
from accelerate import infer_auto_device_map, load_checkpoint_and_dispatch, init_empty_weights
from PIL import Image
import uuid
from data.data_utils import add_special_tokens, pil_img2rgb
from data.transforms import ImageTransform
from inferencer import InterleaveInferencer
from modeling.autoencoder import load_ae
from modeling.bagel.qwen2_navit import NaiveCache
from modeling.bagel import (
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM,
SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from huggingface_hub import snapshot_download
save_dir = "./model"
repo_id = "ByteDance-Seed/BAGEL-7B-MoT"
cache_dir = save_dir + "/cache"
if not os.path.exists(os.path.join(save_dir, "ema.safetensors")):
print(f"Downloading model from {repo_id} to {save_dir}")
snapshot_download(cache_dir=cache_dir,
local_dir=save_dir,
repo_id=repo_id,
local_dir_use_symlinks=False,
resume_download=True,
allow_patterns=["*.json", "*.safetensors", "*.bin", "*.py", "*.md", "*.txt"],
)
else:
print(f"Model found at {save_dir}")
model_path = "./model"
llm_config = Qwen2Config.from_json_file(os.path.join(model_path, "llm_config.json"))
llm_config.qk_norm = True
llm_config.tie_word_embeddings = False
llm_config.layer_module = "Qwen2MoTDecoderLayer"
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_path, "vit_config.json"))
vit_config.rope = False
vit_config.num_hidden_layers -= 1
vae_model, vae_config = load_ae(local_path=os.path.join(model_path, "ae.safetensors"))
config = BagelConfig(
visual_gen=True,
visual_und=True,
llm_config=llm_config,
vit_config=vit_config,
vae_config=vae_config,
vit_max_num_patch_per_side=70,
connector_act='gelu_pytorch_tanh',
latent_patch_size=2,
max_latent_size=64,
)
with init_empty_weights():
language_model = Qwen2ForCausalLM(llm_config)
vit_model = SiglipVisionModel(vit_config)
model = Bagel(language_model, vit_model, config)
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config, meta=True)
tokenizer = Qwen2Tokenizer.from_pretrained(model_path)
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
vae_transform = ImageTransform(1024, 512, 16)
vit_transform = ImageTransform(980, 224, 14)
device_map = infer_auto_device_map(
model,
max_memory={i: "80GiB" for i in range(torch.cuda.device_count())},
no_split_module_classes=["Bagel", "Qwen2MoTDecoderLayer"],
)
same_device_modules = [
'language_model.model.embed_tokens',
'time_embedder',
'latent_pos_embed',
'vae2llm',
'llm2vae',
'connector',
'vit_pos_embed'
]
if torch.cuda.device_count() == 1:
first_device = device_map.get(same_device_modules[0], "cuda:0")
for k in same_device_modules:
device_map[k] = first_device
else:
# Ensure all same_device_modules are on the same device if they exist in device_map
# Find the device for the first module in the list that is actually in the device_map
first_assigned_device = None
for k_module in same_device_modules:
if k_module in device_map:
first_assigned_device = device_map[k_module]
break
if first_assigned_device is not None:
for k_module in same_device_modules:
if k_module in device_map: # Only assign if the module is part of the device_map
device_map[k_module] = first_assigned_device
model = load_checkpoint_and_dispatch(
model,
checkpoint=os.path.join(model_path, "ema.safetensors"),
device_map=device_map,
offload_buffers=True,
dtype=torch.bfloat16,
force_hooks=True,
).eval()
inferencer = InterleaveInferencer(
model=model,
vae_model=vae_model,
tokenizer=tokenizer,
vae_transform=vae_transform,
vit_transform=vit_transform,
new_token_ids=new_token_ids,
)
def set_seed(seed):
if seed is not None and seed > 0:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
return seed
# --- Backend Functions (Adapted from original app.py) ---
@spaces.GPU(duration=90)
def call_text_to_image(prompt, show_thinking, cfg_text_scale, cfg_interval,
timestep_shift, num_timesteps, cfg_renorm_min, cfg_renorm_type,
max_think_token_n, do_sample, text_temperature, seed, image_ratio):
set_seed(seed)
image_shapes = (1024, 1024)
if image_ratio == "4:3": image_shapes = (768, 1024)
elif image_ratio == "3:4": image_shapes = (1024, 768)
elif image_ratio == "16:9": image_shapes = (576, 1024)
elif image_ratio == "9:16": image_shapes = (1024, 576)
inference_hyper = dict(
max_think_token_n=max_think_token_n if show_thinking else 1024,
do_sample=do_sample if show_thinking else False,
text_temperature=text_temperature if show_thinking else 0.3,
cfg_text_scale=cfg_text_scale,
cfg_interval=[cfg_interval, 1.0],
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
image_shapes=image_shapes,
)
result = inferencer(text=prompt, think=show_thinking, **inference_hyper)
return result.get("image", None), result.get("text", None) # text is thinking
@spaces.GPU(duration=90)
def call_image_understanding(image, prompt, show_thinking, do_sample, text_temperature, max_new_tokens, seed):
set_seed(seed)
if image is None: return "Please upload an image.", None
if isinstance(image, np.ndarray): image = Image.fromarray(image)
image = pil_img2rgb(image)
inference_hyper = dict(
do_sample=do_sample,
text_temperature=text_temperature,
max_think_token_n=max_new_tokens,
)
result = inferencer(image=image, text=prompt, think=show_thinking, understanding_output=True, **inference_hyper)
return result.get("text", None), None # Main output is text, thinking is part of it if show_thinking=True
@spaces.GPU(duration=90)
def call_edit_image(image, prompt, show_thinking, cfg_text_scale, cfg_img_scale, cfg_interval,
timestep_shift, num_timesteps, cfg_renorm_min, cfg_renorm_type,
max_think_token_n, do_sample, text_temperature, seed):
set_seed(seed)
if image is None: return "Please upload an image.", None, None
if isinstance(image, np.ndarray): image = Image.fromarray(image)
image = pil_img2rgb(image)
inference_hyper = dict(
max_think_token_n=max_think_token_n if show_thinking else 1024,
do_sample=do_sample if show_thinking else False,
text_temperature=text_temperature if show_thinking else 0.3,
cfg_text_scale=cfg_text_scale,
cfg_img_scale=cfg_img_scale,
cfg_interval=[cfg_interval, 1.0],
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
)
result = inferencer(image=image, text=prompt, think=show_thinking, **inference_hyper)
return result.get("image", None), result.get("text", None) # text is thinking
# --- Gradio UI ---
DEFAULT_WELCOME_MESSAGE = {
"role": "assistant",
"content": [
{"type": "text", "content": "Hello! I am BAGEL, your multimodal assistant. How can I help you today? Select a mode and enter your prompt."}
],
"key": "welcome"
}
class GradioApp:
def __init__(self):
self.current_conversation_id = None
self.conversation_contexts = {}
self.conversations_list = [] # For the sidebar
def _get_current_history(self):
if self.current_conversation_id and self.current_conversation_id in self.conversation_contexts:
return self.conversation_contexts[self.current_conversation_id]["history"]
return []
def _get_current_settings(self):
if self.current_conversation_id and self.current_conversation_id in self.conversation_contexts:
return self.conversation_contexts[self.current_conversation_id].get("settings", {})
return {}
def _update_conversation_list_ui(self):
return gr.update(choices=[(c['label'], c['key']) for c in self.conversations_list], value=self.current_conversation_id)
def add_message(self, text_input, image_input, mode,
# TTI params
tti_show_thinking, tti_cfg_text_scale, tti_cfg_interval, tti_timestep_shift, tti_num_timesteps, tti_cfg_renorm_min, tti_cfg_renorm_type, tti_max_think_token_n, tti_do_sample, tti_text_temperature, tti_seed, tti_image_ratio,
# Edit params
edit_show_thinking, edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval, edit_timestep_shift, edit_num_timesteps, edit_cfg_renorm_min, edit_cfg_renorm_type, edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed,
# Understand params
und_show_thinking, und_do_sample, und_text_temperature, und_max_new_tokens, und_seed
):
if not text_input and not (mode in ["Image Edit", "Image Understanding"] and image_input):
gr.Warning("Please enter a prompt or upload an image for Edit/Understanding modes.")
# Need to yield original state for all outputs if we return early
# This part is tricky with dynamic outputs, might need a dummy update for all
# For simplicity, let's assume user always provides some input
# A better way is to disable submit button if input is invalid
return self._get_current_history(), gr.update(value=None), gr.update(value=None) # chatbot, text_input, image_input
if not self.current_conversation_id:
self.new_chat_session(text_input[:30] if text_input else "New Chat") # Create a new chat if none exists
history = self._get_current_history()
# Store settings for this turn
# This is simplified; best-gradio-ui.py stores settings per conversation
current_turn_settings = {
"mode": mode,
"image_input_path": image_input.name if image_input else None, # Store path if image is uploaded
# TTI
"tti_show_thinking": tti_show_thinking, "tti_cfg_text_scale": tti_cfg_text_scale, "tti_cfg_interval": tti_cfg_interval, "tti_timestep_shift": tti_timestep_shift, "tti_num_timesteps": tti_num_timesteps, "tti_cfg_renorm_min": tti_cfg_renorm_min, "tti_cfg_renorm_type": tti_cfg_renorm_type, "tti_max_think_token_n": tti_max_think_token_n, "tti_do_sample": tti_do_sample, "tti_text_temperature": tti_text_temperature, "tti_seed": tti_seed, "tti_image_ratio": tti_image_ratio,
# Edit
"edit_show_thinking": edit_show_thinking, "edit_cfg_text_scale": edit_cfg_text_scale, "edit_cfg_img_scale": edit_cfg_img_scale, "edit_cfg_interval": edit_cfg_interval, "edit_timestep_shift": edit_timestep_shift, "edit_num_timesteps": edit_num_timesteps, "edit_cfg_renorm_min": edit_cfg_renorm_min, "edit_cfg_renorm_type": edit_cfg_renorm_type, "edit_max_think_token_n": edit_max_think_token_n, "edit_do_sample": edit_do_sample, "edit_text_temperature": edit_text_temperature, "edit_seed": edit_seed,
# Understand
"und_show_thinking": und_show_thinking, "und_do_sample": und_do_sample, "und_text_temperature": und_text_temperature, "und_max_new_tokens": und_max_new_tokens, "und_seed": und_seed
}
self.conversation_contexts[self.current_conversation_id]["settings"] = current_turn_settings
user_message_content = []
if text_input:
user_message_content.append({"type": "text", "content": text_input})
if image_input and mode in ["Image Edit", "Image Understanding"]:
# Gradio chatbot can display images directly if they are file paths or PIL Images
# For simplicity, let's assume image_input is a PIL Image or path that gr.Image can handle
user_message_content.append({"type": "image", "content": image_input})
if not user_message_content:
user_message_content.append({"type": "text", "content": "(No text prompt provided for image operation)"})
history.append({"role": "user", "content": user_message_content, "key": str(uuid.uuid4())})
history.append({"role": "assistant", "content": [{"type": "text", "content": "Processing..."}], "key": str(uuid.uuid4()), "loading": True})
yield history, gr.update(value=None), gr.update(value=None) # chatbot, text_input, image_input (clear inputs)
# Call backend
try:
output_image = None
output_text = None
thinking_text = None
pil_image_input = Image.open(image_input.name) if image_input else None
if mode == "Text to Image":
output_image, thinking_text = call_text_to_image(text_input, tti_show_thinking, tti_cfg_text_scale, tti_cfg_interval, tti_timestep_shift, tti_num_timesteps, tti_cfg_renorm_min, tti_cfg_renorm_type, tti_max_think_token_n, tti_do_sample, tti_text_temperature, tti_seed, tti_image_ratio)
elif mode == "Image Edit":
if not pil_image_input:
output_text = "Error: Image required for Image Edit mode."
else:
output_image, thinking_text = call_edit_image(pil_image_input, text_input, edit_show_thinking, edit_cfg_text_scale, edit_cfg_img_scale, edit_cfg_interval, edit_timestep_shift, edit_num_timesteps, edit_cfg_renorm_min, edit_cfg_renorm_type, edit_max_think_token_n, edit_do_sample, edit_text_temperature, edit_seed)
elif mode == "Image Understanding":
if not pil_image_input:
output_text = "Error: Image required for Image Understanding mode."
else:
output_text, _ = call_image_understanding(pil_image_input, text_input, und_show_thinking, und_do_sample, und_text_temperature, und_max_new_tokens, und_seed)
# For VLM, the main output is text, thinking might be part of it or not separately returned
# depending on `inferencer`'s behavior with `understanding_output=True`
if und_show_thinking and output_text and "Thinking:" in output_text: # crude check
parts = output_text.split("Thinking:", 1)
if len(parts) > 1:
thinking_text = "Thinking:" + parts[1].split("\nAnswer:")[0] if "\nAnswer:" in parts[1] else parts[1]
output_text = parts[0].strip() + ("\nAnswer:" + output_text.split("\nAnswer:")[1] if "\nAnswer:" in output_text else "")
else:
thinking_text = None # Or handle as part of main output_text
bot_response_content = []
if thinking_text:
bot_response_content.append({"type": "text", "content": f"**Thinking Process:**\n{thinking_text}"})
if output_text:
bot_response_content.append({"type": "text", "content": output_text})
if output_image:
bot_response_content.append({"type": "image", "content": output_image})
if not bot_response_content:
bot_response_content.append({"type": "text", "content": "(No output generated)"})
history[-1]["content"] = bot_response_content
history[-1]["loading"] = False
except Exception as e:
print(f"Error during processing: {e}")
history[-1]["content"] = [{"type": "text", "content": f"Error: {str(e)}"}]
history[-1]["loading"] = False
raise gr.Error(f"Processing Error: {str(e)}")
yield history, gr.update(value=None), gr.update(value=None)
def new_chat_session(self, label="New Chat"):
session_id = str(uuid.uuid4())
self.current_conversation_id = session_id
self.conversation_contexts[session_id] = {
"history": [DEFAULT_WELCOME_MESSAGE.copy()],
"settings": {} # Initialize with default settings if any
}
# Ensure label is unique if needed, or just use the provided one
# For simplicity, we allow duplicate labels for now.
new_conv_entry = {"label": label if label else f"Chat {len(self.conversations_list) + 1}", "key": session_id}
self.conversations_list.insert(0, new_conv_entry) # Add to top
return self._get_current_history(), self._update_conversation_list_ui()
def change_chat_session(self, session_id):
if session_id and session_id in self.conversation_contexts:
self.current_conversation_id = session_id
# Potentially update hyperparameter UI elements based on loaded session_settings
# For now, just load history
return self._get_current_history()
return self._get_current_history() # No change or invalid ID
def clear_history(self):
if self.current_conversation_id:
self.conversation_contexts[self.current_conversation_id]["history"] = [DEFAULT_WELCOME_MESSAGE.copy()]
# Also clear current inputs if desired
return self._get_current_history(), gr.update(value=None), gr.update(value=None)
return [], gr.update(value=None), gr.update(value=None)
def build_ui(self):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
<div>
<img src="https://lf3-static.bytednsdoc.com/obj/eden-cn/nuhojubrps/banner.png" alt="BAGEL" width="380"/>
<h1>Unified BAGEL Chat Interface</h1>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Conversations")
conversation_selector = gr.Radio(
label="Select Chat",
choices=[],
type="value"
)
new_chat_btn = gr.Button("➕ New Chat")
gr.Markdown("### Operation Mode")
mode_selector = gr.Radio(
label="Select Mode",
choices=["Text to Image", "Image Edit", "Image Understanding"],
value="Text to Image",
interactive=True
)
# --- Hyperparameter Accordions ---
# Visibility will be controlled by mode_selector
with gr.Accordion("Text to Image Settings", open=True, visible=True) as tti_accordion:
tti_show_thinking_cb = gr.Checkbox(label="Show Thinking Process", value=False, interactive=True)
tti_seed_slider = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed (0 for random)", interactive=True)
tti_image_ratio_dd = gr.Dropdown(choices=["1:1", "4:3", "3:4", "16:9", "9:16"], value="1:1", label="Image Ratio", interactive=True)
tti_cfg_text_scale_slider = gr.Slider(minimum=1.0, maximum=8.0, value=4.0, step=0.1, label="CFG Text Scale", interactive=True)
tti_cfg_interval_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.1, label="CFG Interval Start", interactive=True)
tti_cfg_renorm_type_dd = gr.Dropdown(choices=["global", "local", "text_channel"], value="global", label="CFG Renorm Type", interactive=True)
tti_cfg_renorm_min_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.1, label="CFG Renorm Min", interactive=True)
tti_num_timesteps_slider = gr.Slider(minimum=10, maximum=100, value=50, step=5, label="Timesteps", interactive=True)
tti_timestep_shift_slider = gr.Slider(minimum=1.0, maximum=5.0, value=3.0, step=0.5, label="Timestep Shift", interactive=True)
with gr.Group(visible=False) as tti_thinking_params_group:
tti_do_sample_cb = gr.Checkbox(label="Sampling (for thinking)", value=False, interactive=True)
tti_max_think_token_slider = gr.Slider(minimum=64, maximum=4096, value=1024, step=64, label="Max Think Tokens", interactive=True)
tti_text_temp_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Temperature (for thinking)", interactive=True)
tti_show_thinking_cb.change(lambda x: gr.update(visible=x), inputs=[tti_show_thinking_cb], outputs=[tti_thinking_params_group])
with gr.Accordion("Image Edit Settings", open=False, visible=False) as edit_accordion:
edit_show_thinking_cb = gr.Checkbox(label="Show Thinking Process", value=False, interactive=True)
edit_seed_slider = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed (0 for random)", interactive=True)
edit_cfg_text_scale_slider = gr.Slider(1.0, 8.0, value=4.0, step=0.1, label="CFG Text Scale", interactive=True)
edit_cfg_img_scale_slider = gr.Slider(1.0, 4.0, value=2.0, step=0.1, label="CFG Image Scale", interactive=True)
edit_cfg_interval_slider = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="CFG Interval Start", interactive=True)
edit_cfg_renorm_type_dd = gr.Dropdown(["global", "local", "text_channel"], value="text_channel", label="CFG Renorm Type", interactive=True)
edit_cfg_renorm_min_slider = gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="CFG Renorm Min", interactive=True)
edit_num_timesteps_slider = gr.Slider(10, 100, value=50, step=5, label="Timesteps", interactive=True)
edit_timestep_shift_slider = gr.Slider(1.0, 10.0, value=3.0, step=0.5, label="Timestep Shift", interactive=True)
with gr.Group(visible=False) as edit_thinking_params_group:
edit_do_sample_cb = gr.Checkbox(label="Sampling (for thinking)", value=False, interactive=True)
edit_max_think_token_slider = gr.Slider(64, 4096, value=1024, step=64, label="Max Think Tokens", interactive=True)
edit_text_temp_slider = gr.Slider(0.1, 1.0, value=0.3, step=0.1, label="Temperature (for thinking)", interactive=True)
edit_show_thinking_cb.change(lambda x: gr.update(visible=x), inputs=[edit_show_thinking_cb], outputs=[edit_thinking_params_group])
with gr.Accordion("Image Understanding Settings", open=False, visible=False) as und_accordion:
und_show_thinking_cb = gr.Checkbox(label="Show Thinking Process (if applicable)", value=False, interactive=True)
und_seed_slider = gr.Slider(minimum=0, maximum=1000000, value=0, step=1, label="Seed (0 for random)", interactive=True)
und_do_sample_cb = gr.Checkbox(label="Sampling", value=False, interactive=True)
und_text_temp_slider = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature", interactive=True)
und_max_new_tokens_slider = gr.Slider(32, 2048, value=512, step=32, label="Max New Tokens", interactive=True)
# Logic to show/hide accordions based on mode
def update_accordion_visibility(mode):
return (
gr.update(visible=mode == "Text to Image"),
gr.update(visible=mode == "Image Edit"),
gr.update(visible=mode == "Image Understanding")
)
mode_selector.change(update_accordion_visibility, inputs=[mode_selector], outputs=[tti_accordion, edit_accordion, und_accordion])
with gr.Column(scale=3):
chatbot_ui = gr.Chatbot(label="BAGEL Chat", value=[DEFAULT_WELCOME_MESSAGE.copy()], bubble_full_width=False, height=600)
with gr.Row():
image_upload_ui = gr.Image(type="pil", label="Upload Image (for Edit/Understand)", sources=['upload'], visible=False, interactive=True)
with gr.Row():
text_input_ui = gr.Textbox(label="Enter your prompt here...", lines=3, scale=7, interactive=True)
submit_btn = gr.Button("Send", variant="primary", scale=1)
clear_btn = gr.Button("Clear Chat", scale=1)
# Show/hide image upload based on mode
def update_image_upload_visibility(mode):
return gr.update(visible=mode in ["Image Edit", "Image Understanding"])
mode_selector.change(update_image_upload_visibility, inputs=[mode_selector], outputs=[image_upload_ui])
# Initial state setup
demo.load(lambda: self.new_chat_session("Welcome Chat"), outputs=[chatbot_ui, conversation_selector])
# Event handlers
new_chat_btn.click(
self.new_chat_session,
inputs=None,
outputs=[chatbot_ui, conversation_selector]
)
conversation_selector.change(
self.change_chat_session,
inputs=[conversation_selector],
outputs=[chatbot_ui]
)
submit_btn.click(
self.add_message,
inputs=[
text_input_ui, image_upload_ui, mode_selector,
# TTI
tti_show_thinking_cb, tti_cfg_text_scale_slider, tti_cfg_interval_slider, tti_timestep_shift_slider, tti_num_timesteps_slider, tti_cfg_renorm_min_slider, tti_cfg_renorm_type_dd, tti_max_think_token_slider, tti_do_sample_cb, tti_text_temp_slider, tti_seed_slider, tti_image_ratio_dd,
# Edit
edit_show_thinking_cb, edit_cfg_text_scale_slider, edit_cfg_img_scale_slider, edit_cfg_interval_slider, edit_timestep_shift_slider, edit_num_timesteps_slider, edit_cfg_renorm_min_slider, edit_cfg_renorm_type_dd, edit_max_think_token_slider, edit_do_sample_cb, edit_text_temp_slider, edit_seed_slider,
# Understand
und_show_thinking_cb, und_do_sample_cb, und_text_temp_slider, und_max_new_tokens_slider, und_seed_slider
],
outputs=[chatbot_ui, text_input_ui, image_upload_ui]
)
text_input_ui.submit(
self.add_message,
inputs=[
text_input_ui, image_upload_ui, mode_selector,
# TTI
tti_show_thinking_cb, tti_cfg_text_scale_slider, tti_cfg_interval_slider, tti_timestep_shift_slider, tti_num_timesteps_slider, tti_cfg_renorm_min_slider, tti_cfg_renorm_type_dd, tti_max_think_token_slider, tti_do_sample_cb, tti_text_temp_slider, tti_seed_slider, tti_image_ratio_dd,
# Edit
edit_show_thinking_cb, edit_cfg_text_scale_slider, edit_cfg_img_scale_slider, edit_cfg_interval_slider, edit_timestep_shift_slider, edit_num_timesteps_slider, edit_cfg_renorm_min_slider, edit_cfg_renorm_type_dd, edit_max_think_token_slider, edit_do_sample_cb, edit_text_temp_slider, edit_seed_slider,
# Understand
und_show_thinking_cb, und_do_sample_cb, und_text_temp_slider, und_max_new_tokens_slider, und_seed_slider
],
outputs=[chatbot_ui, text_input_ui, image_upload_ui]
)
clear_btn.click(self.clear_history, inputs=None, outputs=[chatbot_ui, text_input_ui, image_upload_ui])
return demo
# Main execution
if __name__ == "__main__":
app_instance = GradioApp()
demo_ui = app_instance.build_ui()
demo_ui.queue().launch(share=True, debug=True) # Set share=True if you need a public link