Bagel-7B-Demo / eval /gen /gen_images_mp_wise.py
KingNish's picture
Upload 110 files
e6af450 verified
raw
history blame
14.6 kB
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import os
import json
import argparse
from safetensors.torch import load_file
import torch
import torch.distributed as dist
from data.data_utils import add_special_tokens
from modeling.bagel import (
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM, SiglipVisionConfig, SiglipVisionModel
)
from modeling.qwen2 import Qwen2Tokenizer
from modeling.autoencoder import load_ae
import copy
from PIL import Image
from modeling.bagel.qwen2_navit import NaiveCache
def setup_distributed():
dist.init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
SYSTEM_PROMPT = '''You should first think about the planning process in the mind and then generate the image.
The planning process is enclosed within <think> </think> tags, i.e. <think> planning process here </think> image here'''
def move_generation_input_to_device(generation_input, device):
# Utility to move all tensors in generation_input to device
for k, v in generation_input.items():
if isinstance(v, torch.Tensor):
generation_input[k] = v.to(device)
return generation_input
def generate_image_with_think(
prompt, num_timesteps=50, cfg_scale=4.0, cfg_interval=[0, 1.0], cfg_renorm_min=0., timestep_shift=4.0, resolution=1024,
max_length=2048, simple_think=False, device=None
):
h, w = resolution, resolution
past_key_values = NaiveCache(model.config.llm_config.num_hidden_layers)
newlens = [0]
new_rope = [0]
# system prompt
generation_input, newlens, new_rope = model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[SYSTEM_PROMPT],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
past_key_values = model.forward_cache_update_text(past_key_values, **generation_input)
########## cfg
generation_input_cfg = model.prepare_vae_latent_cfg(
curr_kvlens=newlens,
curr_rope=new_rope,
image_sizes=[(h, w)],
)
generation_input_cfg = move_generation_input_to_device(generation_input_cfg, device)
########## cfg
generation_input, newlens, new_rope = model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[prompt],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
past_key_values = model.forward_cache_update_text(past_key_values, **generation_input)
########## think
tmp_past_key_values = copy.deepcopy(past_key_values)
tmp_newlens = copy.deepcopy(newlens)
tmp_new_rope = copy.deepcopy(new_rope)
tmp_generation_input, tmp_newlens, tmp_new_rope = model.prepare_prompts(
curr_kvlens=tmp_newlens,
curr_rope=tmp_new_rope,
prompts=[prompt],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
tmp_generation_input = move_generation_input_to_device(tmp_generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
tmp_past_key_values = model.forward_cache_update_text(tmp_past_key_values, **tmp_generation_input)
tmp_generation_input = model.prepare_start_tokens(tmp_newlens, tmp_new_rope, new_token_ids)
tmp_generation_input = move_generation_input_to_device(tmp_generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
unpacked_latent = model.generate_text(
past_key_values=tmp_past_key_values,
max_length=max_length,
do_sample=True,
temperature=0.3,
end_token_id=new_token_ids['eos_token_id'],
**tmp_generation_input,
)
output = tokenizer.decode(unpacked_latent[:,0])
think_output = output.split('<|im_end|>')[0].split('<|im_start|>')[1]
print("="*30, "original think", "="*30)
print(think_output)
if simple_think:
think_output_list = think_output.split("</think>")
if think_output_list[1] != "":
think_output = think_output_list[1].strip()
print("="*30, "processed think", "="*30)
print(think_output)
########## think
generation_input, newlens, new_rope = model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[think_output],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
past_key_values = model.forward_cache_update_text(past_key_values, **generation_input)
generation_input = model.prepare_vae_latent(
curr_kvlens=newlens,
curr_rope=new_rope,
image_sizes=[(h, w)],
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
########## generate image
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
unpacked_latent = model.generate_image(
past_key_values=past_key_values,
num_timesteps=num_timesteps,
cfg_text_scale=cfg_scale,
cfg_interval=cfg_interval,
timestep_shift=timestep_shift,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type="global",
cfg_text_past_key_values=None,
cfg_text_packed_position_ids=generation_input_cfg["cfg_packed_position_ids"],
cfg_text_key_values_lens=generation_input_cfg["cfg_key_values_lens"],
cfg_text_packed_query_indexes=generation_input_cfg["cfg_packed_query_indexes"],
cfg_text_packed_key_value_indexes=generation_input_cfg["cfg_packed_key_value_indexes"],
**generation_input,
)
latent0 = unpacked_latent[0]
latent0 = latent0.reshape(1, h//16, w//16, 2, 2, 16)
latent0 = torch.einsum("nhwpqc->nchpwq", latent0)
latent0 = latent0.reshape(1, 16, h//8, w//8)
image = vae_model.decode(latent0.to(device))
tmpimage = ((image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy()
tmpimage = Image.fromarray(tmpimage)
return tmpimage, think_output
def generate_image(prompt, num_timesteps=50, cfg_scale=4.0, cfg_interval=[0, 1.0], cfg_renorm_min=0., timestep_shift=1.0, resolution=1024, device=None):
past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers)
newlens = [0]
new_rope = [0]
generation_input, newlens, new_rope = gen_model.prepare_prompts(
curr_kvlens=newlens,
curr_rope=new_rope,
prompts=[prompt],
tokenizer=tokenizer,
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
with torch.no_grad():
with torch.amp.autocast("cuda", enabled=True, dtype=torch.float16):
past_key_values = gen_model.forward_cache_update_text(past_key_values, **generation_input)
generation_input = gen_model.prepare_vae_latent(
curr_kvlens=newlens,
curr_rope=new_rope,
image_sizes=[(resolution, resolution)],
new_token_ids=new_token_ids,
)
generation_input = move_generation_input_to_device(generation_input, device)
cfg_past_key_values = NaiveCache(gen_model.config.llm_config.num_hidden_layers)
cfg_newlens = [0]
cfg_new_rope = [0]
generation_input_cfg = model.prepare_vae_latent_cfg(
curr_kvlens=cfg_newlens,
curr_rope=cfg_new_rope,
image_sizes=[(resolution, resolution)],
)
generation_input_cfg = move_generation_input_to_device(generation_input_cfg, device)
with torch.no_grad():
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
unpacked_latent = gen_model.generate_image(
past_key_values=past_key_values,
num_timesteps=num_timesteps,
cfg_text_scale=cfg_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
timestep_shift=timestep_shift,
cfg_text_past_key_values=cfg_past_key_values,
cfg_text_packed_position_ids=generation_input_cfg["cfg_packed_position_ids"],
cfg_text_key_values_lens=generation_input_cfg["cfg_key_values_lens"],
cfg_text_packed_query_indexes=generation_input_cfg["cfg_packed_query_indexes"],
cfg_text_packed_key_value_indexes=generation_input_cfg["cfg_packed_key_value_indexes"],
**generation_input,
)
latent = unpacked_latent[0]
latent = latent.reshape(1, resolution//16, resolution//16, 2, 2, 16)
latent = torch.einsum("nhwpqc->nchpwq", latent)
latent = latent.reshape(1, 16, resolution//8, resolution//8)
image = vae_model.decode(latent.to(device))
tmpimage = ((image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy()
tmpimage = Image.fromarray(tmpimage)
return tmpimage
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate images using Bagel model.")
parser.add_argument("--output_dir", type=str, required=True, help="Directory to save the generated images.")
parser.add_argument("--metadata_file", type=str, required=True, help="JSON file containing lines of metadata for each prompt.")
parser.add_argument("--cfg_scale", type=float, default=4)
parser.add_argument("--resolution", type=int, default=1024)
parser.add_argument("--max_latent_size", type=int, default=64)
parser.add_argument("--think", action="store_true")
parser.add_argument('--model-path', type=str, default='hf/BAGEL-7B-MoT/')
args = parser.parse_args()
seed = 42
if seed is not None:
import random
import numpy as np
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
setup_distributed()
rank = dist.get_rank()
world_size = dist.get_world_size()
device = f"cuda:{rank}"
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
if rank == 0:
print(f"Output images are saved in {output_dir}")
llm_config = Qwen2Config.from_json_file(os.path.join(args.model_path, "llm_config.json"))
llm_config.qk_norm = True
llm_config.tie_word_embeddings = False
llm_config.layer_module = "Qwen2MoTDecoderLayer"
vit_config = SiglipVisionConfig.from_json_file(os.path.join(args.model_path, "vit_config.json"))
vit_config.rope = False
vit_config.num_hidden_layers = vit_config.num_hidden_layers - 1
vae_model, vae_config = load_ae(local_path=os.path.join(args.model_path, "ae.safetensors"))
config = BagelConfig(
visual_gen=True,
visual_und=True,
llm_config=llm_config,
vit_config=vit_config,
vae_config=vae_config,
vit_max_num_patch_per_side=70,
connector_act='gelu_pytorch_tanh',
latent_patch_size=2,
max_latent_size=args.max_latent_size,
)
language_model = Qwen2ForCausalLM(llm_config)
vit_model = SiglipVisionModel(vit_config)
model = Bagel(language_model, vit_model, config)
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config)
tokenizer = Qwen2Tokenizer.from_pretrained(args.model_path)
tokenizer, new_token_ids, _ = add_special_tokens(tokenizer)
model_state_dict_path = os.path.join(args.model_path, "ema.safetensors")
model_state_dict = load_file(model_state_dict_path, device="cpu")
msg = model.load_state_dict(model_state_dict, strict=False)
if rank == 0:
print(msg)
del model_state_dict
model = model.to(device).eval()
vae_model = vae_model.to(device).eval()
gen_model = model
cfg_scale = args.cfg_scale
cfg_interval = [0.4, 1.0]
timestep_shift = 3.0
num_timesteps = 50
cfg_renorm_min = 0.0
with open(args.metadata_file, "r") as f:
metadatas = json.load(f)
total_metadatas = len(metadatas)
prompts_per_gpu = (total_metadatas + world_size - 1) // world_size
start = rank * prompts_per_gpu
end = min(start + prompts_per_gpu, total_metadatas)
print(f"GPU {rank}: Processing {end - start} prompts (indices {start} to {end - 1})")
for idx in range(start, end):
metadata = metadatas[idx]
prompt = metadata['Prompt']
prompt_id = metadata['prompt_id']
outpath = os.path.join(output_dir, f"{prompt_id}.png")
print(f"GPU {rank} processing prompt {idx - start + 1}/{end - start}: '{prompt}'")
if os.path.exists(outpath):
print(f"GPU {rank} skipping generation for prompt: {prompt}")
continue
if args.think:
tmpimage, think_output = generate_image_with_think(
prompt=prompt,
cfg_scale=cfg_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
resolution=args.resolution,
max_length=2048,
simple_think=False,
device=device,
)
with open(outpath.replace(".png", ".txt"), "w") as f:
f.write(think_output)
else:
tmpimage = generate_image(
prompt=prompt,
cfg_scale=cfg_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
resolution=args.resolution,
device=device,
)
tmpimage = tmpimage.crop(tmpimage.getbbox())
tmpimage.save(outpath)
print(f"GPU {rank} has completed all tasks")
dist.barrier()