Bagel-7B-Demo / inferencer.py
KingNish's picture
Upload 110 files
e6af450 verified
raw
history blame
12.5 kB
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
from copy import deepcopy
from typing import List, Dict, Tuple, Optional, Union, Any
import matplotlib.pyplot as plt
from PIL import Image
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.attention.flex_attention import create_block_mask
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_utils import PreTrainedModel
from data.data_utils import pil_img2rgb
from modeling.bagel.qwen2_navit import NaiveCache
VLM_THINK_SYSTEM_PROMPT = '''You should first think about the reasoning process in the mind and then provide the user with the answer.
The reasoning process is enclosed within <think> </think> tags, i.e. <think> reasoning process here </think> answer here'''
GEN_THINK_SYSTEM_PROMPT = '''You should first think about the planning process in the mind and then generate the image.
The planning process is enclosed within <think> </think> tags, i.e. <think> planning process here </think> image here'''
class InterleaveInferencer:
def __init__(self, model, vae_model, tokenizer, vae_transform, vit_transform, new_token_ids):
self.model = model
self.vae_model = vae_model
self.tokenizer = tokenizer
self.vae_transform = vae_transform
self.vit_transform = vit_transform
self.new_token_ids = new_token_ids
def init_gen_context(self):
gen_context = {
'kv_lens': [0],
'ropes': [0],
'past_key_values': NaiveCache(self.model.config.llm_config.num_hidden_layers),
}
return gen_context
@torch.no_grad()
def update_context_text(self, text, gen_context):
# used for interleave data, currently only support 1 data inference,
past_key_values = gen_context['past_key_values']
kv_lens = gen_context['kv_lens']
ropes = gen_context['ropes']
generation_input, kv_lens, ropes = self.model.prepare_prompts(
curr_kvlens=kv_lens,
curr_rope=ropes,
prompts=[text],
tokenizer=self.tokenizer,
new_token_ids=self.new_token_ids,
)
past_key_values = self.model.forward_cache_update_text(past_key_values, **generation_input)
gen_context['kv_lens'] = kv_lens
gen_context['ropes'] = ropes
gen_context['past_key_values'] = past_key_values
return gen_context
@torch.no_grad()
def update_context_image(self, image, gen_context, vae=True, vit=True):
# used for interleave data, currently only support 1 data inference,
assert vae or vit
past_key_values = gen_context['past_key_values']
kv_lens = gen_context['kv_lens']
ropes = gen_context['ropes']
if vae:
## update vae
generation_input, kv_lens, ropes = self.model.prepare_vae_images(
curr_kvlens=kv_lens,
curr_rope=ropes,
images=[image],
transforms=self.vae_transform,
new_token_ids=self.new_token_ids,
)
past_key_values = self.model.forward_cache_update_vae(self.vae_model, past_key_values, **generation_input)
if vit:
## update vit
generation_input, kv_lens, ropes = self.model.prepare_vit_images(
curr_kvlens=kv_lens,
curr_rope=ropes,
images=[image],
transforms=self.vit_transform,
new_token_ids=self.new_token_ids,
)
past_key_values = self.model.forward_cache_update_vit(past_key_values, **generation_input)
gen_context['kv_lens'] = kv_lens
gen_context['ropes'] = ropes
gen_context['past_key_values'] = past_key_values
return gen_context
@torch.no_grad()
def gen_image(
self,
image_shape,
gen_context,
cfg_text_scale=4.0,
cfg_img_scale=1.5,
cfg_text_precontext=None,
cfg_img_precontext=None,
cfg_interval=(0.4, 1.0),
cfg_renorm_min=0.0,
cfg_renorm_type="global",
num_timesteps=50,
timestep_shift=3.0
):
# print(cfg_renorm_type)
past_key_values = gen_context['past_key_values']
kv_lens = gen_context['kv_lens']
ropes = gen_context['ropes']
generation_input = self.model.prepare_vae_latent(
curr_kvlens=kv_lens,
curr_rope=ropes,
image_sizes=[image_shape],
new_token_ids=self.new_token_ids,
)
# text cfg
cfg_text_past_key_values = cfg_text_precontext['past_key_values']
kv_lens_cfg = cfg_text_precontext['kv_lens']
ropes_cfg = cfg_text_precontext['ropes']
generation_input_cfg_text = self.model.prepare_vae_latent_cfg(
curr_kvlens=kv_lens_cfg,
curr_rope=ropes_cfg,
image_sizes=[image_shape],
)
# img cfg
cfg_img_past_key_values = cfg_img_precontext['past_key_values']
kv_lens_cfg = cfg_img_precontext['kv_lens']
ropes_cfg = cfg_img_precontext['ropes']
generation_input_cfg_img = self.model.prepare_vae_latent_cfg(
curr_kvlens=kv_lens_cfg,
curr_rope=ropes_cfg,
image_sizes=[image_shape],
)
unpacked_latent = self.model.generate_image(
past_key_values=past_key_values,
cfg_text_past_key_values=cfg_text_past_key_values,
cfg_img_past_key_values=cfg_img_past_key_values,
num_timesteps=num_timesteps,
cfg_text_scale=cfg_text_scale,
cfg_img_scale=cfg_img_scale,
cfg_interval=cfg_interval,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
timestep_shift=timestep_shift,
**generation_input,
cfg_text_packed_position_ids=generation_input_cfg_text['cfg_packed_position_ids'],
cfg_text_packed_query_indexes=generation_input_cfg_text['cfg_packed_query_indexes'],
cfg_text_key_values_lens=generation_input_cfg_text['cfg_key_values_lens'],
cfg_text_packed_key_value_indexes=generation_input_cfg_text['cfg_packed_key_value_indexes'],
cfg_img_packed_position_ids=generation_input_cfg_img['cfg_packed_position_ids'],
cfg_img_packed_query_indexes=generation_input_cfg_img['cfg_packed_query_indexes'],
cfg_img_key_values_lens=generation_input_cfg_img['cfg_key_values_lens'],
cfg_img_packed_key_value_indexes=generation_input_cfg_img['cfg_packed_key_value_indexes'],
)
image = self.decode_image(unpacked_latent[0], image_shape)
return image
def decode_image(self, latent, image_shape):
H, W = image_shape
h, w = H // self.model.latent_downsample, W // self.model.latent_downsample
latent = latent.reshape(1, h, w, self.model.latent_patch_size, self.model.latent_patch_size, self.model.latent_channel)
latent = torch.einsum("nhwpqc->nchpwq", latent)
latent = latent.reshape(1, self.model.latent_channel, h * self.model.latent_patch_size, w * self.model.latent_patch_size)
image = self.vae_model.decode(latent)
image = (image * 0.5 + 0.5).clamp(0, 1)[0].permute(1, 2, 0) * 255
image = Image.fromarray((image).to(torch.uint8).cpu().numpy())
return image
@torch.no_grad()
def gen_text(self, gen_context, max_length: int = 500, do_sample: bool = True, temperature: float = 1.0):
gen_context = deepcopy(gen_context)
past_key_values = gen_context['past_key_values']
kv_lens = gen_context['kv_lens']
ropes = gen_context['ropes']
generation_input = self.model.prepare_start_tokens(kv_lens, ropes, self.new_token_ids)
unpacked_latent = self.model.generate_text(
past_key_values=past_key_values,
max_length=max_length,
do_sample=do_sample,
temperature=temperature,
end_token_id=self.new_token_ids['eos_token_id'],
**generation_input,
)
output = self.tokenizer.decode(unpacked_latent[:,0])
output = output.split('<|im_end|>')[0].split('<|im_start|>')[1]
return output
@torch.no_grad()
def interleave_inference(
self,
input_lists: List[Union[str, Image.Image]],
think=False,
understanding_output=False,
max_think_token_n=1000,
do_sample=False,
text_temperature=0.3,
cfg_text_scale=3.0,
cfg_img_scale=1.5,
cfg_interval=[0.4, 1.0],
timestep_shift=3.0,
num_timesteps=50,
cfg_renorm_min=0.0,
cfg_renorm_type="global",
image_shapes=(1024, 1024),
) -> List[Union[str, Image.Image]]:
output_list = []
gen_context = self.init_gen_context()
cfg_text_context = deepcopy(gen_context)
cfg_img_context = deepcopy(gen_context)
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
if think:
if understanding_output:
system_prompt = VLM_THINK_SYSTEM_PROMPT
else:
system_prompt = GEN_THINK_SYSTEM_PROMPT
gen_context = self.update_context_text(system_prompt, gen_context)
cfg_img_context = self.update_context_text(system_prompt, cfg_img_context)
for input_term in input_lists:
if isinstance(input_term, str):
cfg_text_context = deepcopy(gen_context)
gen_context = self.update_context_text(input_term, gen_context)
cfg_img_context = self.update_context_text(input_term, cfg_img_context)
elif isinstance(input_term, Image.Image):
input_term = self.vae_transform.resize_transform(pil_img2rgb(input_term))
gen_context = self.update_context_image(input_term, gen_context, vae=not understanding_output)
image_shapes = input_term.size[::-1]
cfg_text_context = deepcopy(gen_context)
else:
raise ValueError(f"Unsupported input type: {type(input_term)}")
if understanding_output:
gen_text = self.gen_text(gen_context, do_sample=do_sample, temperature=text_temperature, max_length=max_think_token_n)
output_list.append(gen_text)
else:
if think:
gen_text = self.gen_text(gen_context, do_sample=do_sample, temperature=text_temperature, max_length=max_think_token_n)
gen_context = self.update_context_text(gen_text, gen_context)
output_list.append(gen_text)
img = self.gen_image(
image_shapes,
gen_context,
cfg_text_precontext=cfg_text_context,
cfg_img_precontext=cfg_img_context,
cfg_text_scale=cfg_text_scale,
cfg_img_scale=cfg_img_scale,
cfg_interval=cfg_interval,
timestep_shift=timestep_shift,
num_timesteps=num_timesteps,
cfg_renorm_min=cfg_renorm_min,
cfg_renorm_type=cfg_renorm_type,
)
output_list.append(img)
return output_list
def __call__(
self,
image: Optional[Image.Image] = None,
text: Optional[str] = None,
**kargs
) -> Dict[str, Any]:
output_dict = {'image': None, 'text': None}
if image is None and text is None:
print('Please provide at least one input: either an image or text.')
return output_dict
input_list = []
if image is not None:
input_list.append(image)
if text is not None:
input_list.append(text)
output_list = self.interleave_inference(input_list, **kargs)
for i in output_list:
if isinstance(i, Image.Image):
output_dict['image'] = i
elif isinstance(i, str):
output_dict['text'] = i
return output_dict