Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 Bytedance Ltd. and/or its affiliates. | |
# SPDX-License-Identifier: Apache-2.0 | |
import io | |
import json | |
import pyarrow.parquet as pq | |
import random | |
from PIL import Image | |
from .data_utils import pil_img2rgb | |
from .distributed_iterable_dataset import DistributedIterableDataset | |
from .parquet_utils import get_parquet_data_paths, init_arrow_pf_fs | |
Image.MAX_IMAGE_PIXELS = 20_000_000 | |
class T2IIterableDataset(DistributedIterableDataset): | |
def __init__( | |
self, dataset_name, transform, tokenizer, data_dir_list, num_used_data, | |
local_rank=0, world_size=1, num_workers=8, data_status=None, | |
): | |
""" | |
data_dir_list: list of data directories contains parquet files | |
num_used_data: list of number of sampled data paths for each data directory | |
""" | |
super().__init__(dataset_name, local_rank, world_size, num_workers) | |
self.transform = transform | |
self.tokenizer = tokenizer | |
self.data_status = data_status | |
self.data_paths = self.get_data_paths(data_dir_list, num_used_data) | |
self.set_epoch() | |
def get_data_paths(self, data_dir_list, num_used_data): | |
return get_parquet_data_paths(data_dir_list, num_used_data) | |
def __iter__(self): | |
data_paths_per_worker, worker_id = self.get_data_paths_per_worker() | |
if self.data_status is not None: | |
parquet_start_id = self.data_status[worker_id][0] | |
row_group_start_id = self.data_status[worker_id][1] | |
row_start_id = self.data_status[worker_id][2] + 1 | |
else: | |
parquet_start_id = 0 | |
row_group_start_id = 0 | |
row_start_id = 0 | |
transform_stride = self.transform.stride | |
print( | |
f"rank-{self.local_rank} worker-{worker_id} dataset-{self.dataset_name}: " | |
f"resuming data at parquet#{parquet_start_id}, rg#{row_group_start_id}, row#{row_start_id}" | |
) | |
while True: | |
data_paths_per_worker_ = data_paths_per_worker[parquet_start_id:] | |
for parquet_idx, parquet_file_path in enumerate(data_paths_per_worker_, start=parquet_start_id): | |
fs = init_arrow_pf_fs(parquet_file_path) | |
with fs.open_input_file(parquet_file_path) as f: | |
fr = pq.ParquetFile(f) | |
row_group_ids = list(range(fr.num_row_groups)) | |
row_group_ids_ = row_group_ids[row_group_start_id:] | |
for row_group_id in row_group_ids_: | |
df = fr.read_row_group(row_group_id).to_pandas() | |
df = df.iloc[row_start_id:] | |
for row_idx, row in df.iterrows(): | |
num_tokens = 0 | |
try: | |
image_byte = row['image'] | |
image = pil_img2rgb(Image.open(io.BytesIO(image_byte))) | |
except Exception as e: | |
print(f'Error: {e} in rg#{row_group_id}, {parquet_file_path}') | |
continue | |
image_tensor = self.transform(image) | |
height, width = image_tensor.shape[1:] | |
num_tokens += width * height // transform_stride ** 2 | |
try: | |
caption_dict = row['captions'] | |
caption_dict = json.loads(caption_dict) | |
except Exception as e: | |
print(f'Error: {e} in rg#{row_group_id}, {parquet_file_path}') | |
continue | |
caps_token = [self.tokenizer.encode(v) for _, v in caption_dict.items()] | |
if len(caps_token) == 0: | |
print(f'no caption in rg#{row_group_id}, {parquet_file_path}') | |
caption_token = self.tokenizer.encode(' ') | |
else: | |
caption_token = random.choice(caps_token) | |
sequence_plan, text_ids_list = [], [] | |
text_ids = caption_token | |
num_tokens += len(caption_token) | |
text_ids_list.append(text_ids) | |
sequence_plan.append({ | |
'type': 'text', | |
'enable_cfg': 1, | |
'loss': 0, | |
'special_token_loss': 0, | |
'special_token_label': None, | |
}) | |
sequence_plan.append({ | |
'type': 'vae_image', | |
'enable_cfg': 0, | |
'loss': 1, | |
'special_token_loss': 0, | |
'special_token_label': None, | |
}) | |
sample = dict( | |
image_tensor_list=[image_tensor], | |
text_ids_list=text_ids_list, | |
num_tokens=num_tokens, | |
sequence_plan=sequence_plan, | |
data_indexes={ | |
"data_indexes": [parquet_idx, row_group_id, row_idx], | |
"worker_id": worker_id, | |
"dataset_name": self.dataset_name, | |
} | |
) | |
yield sample | |
row_start_id = 0 | |
row_group_start_id = 0 | |
parquet_start_id = 0 | |
print(f"{self.dataset_name} repeat in rank-{self.local_rank} worker-{worker_id}") | |