Bagel-7B-Demo / data /transforms.py
KingNish's picture
Upload 110 files
e6af450 verified
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
import random
from PIL import Image
import cv2
import numpy as np
import torch
from torchvision import transforms
from torchvision.transforms import functional as F
from torchvision.transforms import InterpolationMode
class MaxLongEdgeMinShortEdgeResize(torch.nn.Module):
"""Resize the input image so that its longest side and shortest side are within a specified range,
ensuring that both sides are divisible by a specified stride.
Args:
max_size (int): Maximum size for the longest edge of the image.
min_size (int): Minimum size for the shortest edge of the image.
stride (int): Value by which the height and width of the image must be divisible.
max_pixels (int): Maximum pixels for the full image.
interpolation (InterpolationMode): Desired interpolation enum defined by
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.NEAREST_EXACT``,
``InterpolationMode.BILINEAR``, and ``InterpolationMode.BICUBIC`` are supported.
The corresponding Pillow integer constants, e.g., ``PIL.Image.BILINEAR`` are also accepted.
antialias (bool, optional): Whether to apply antialiasing (default is True).
"""
def __init__(
self,
max_size: int,
min_size: int,
stride: int,
max_pixels: int,
interpolation=InterpolationMode.BICUBIC,
antialias=True
):
super().__init__()
self.max_size = max_size
self.min_size = min_size
self.stride = stride
self.max_pixels = max_pixels
self.interpolation = interpolation
self.antialias = antialias
def _make_divisible(self, value, stride):
"""Ensure the value is divisible by the stride."""
return max(stride, int(round(value / stride) * stride))
def _apply_scale(self, width, height, scale):
new_width = round(width * scale)
new_height = round(height * scale)
new_width = self._make_divisible(new_width, self.stride)
new_height = self._make_divisible(new_height, self.stride)
return new_width, new_height
def forward(self, img, img_num=1):
"""
Args:
img (PIL Image): Image to be resized.
img_num (int): Number of images, used to change max_tokens.
Returns:
PIL Image or Tensor: Rescaled image with divisible dimensions.
"""
if isinstance(img, torch.Tensor):
height, width = img.shape[-2:]
else:
width, height = img.size
scale = min(self.max_size / max(width, height), 1.0)
scale = max(scale, self.min_size / min(width, height))
new_width, new_height = self._apply_scale(width, height, scale)
# Ensure the number of pixels does not exceed max_pixels
if new_width * new_height > self.max_pixels / img_num:
scale = self.max_pixels / img_num / (new_width * new_height)
new_width, new_height = self._apply_scale(new_width, new_height, scale)
# Ensure longest edge does not exceed max_size
if max(new_width, new_height) > self.max_size:
scale = self.max_size / max(new_width, new_height)
new_width, new_height = self._apply_scale(new_width, new_height, scale)
return F.resize(img, (new_height, new_width), self.interpolation, antialias=self.antialias)
class ImageTransform:
def __init__(
self,
max_image_size,
min_image_size,
image_stride,
max_pixels=14*14*9*1024,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5]
):
self.stride = image_stride
self.resize_transform = MaxLongEdgeMinShortEdgeResize(
max_size=max_image_size,
min_size=min_image_size,
stride=image_stride,
max_pixels=max_pixels,
)
self.to_tensor_transform = transforms.ToTensor()
self.normalize_transform = transforms.Normalize(mean=image_mean, std=image_std, inplace=True)
def __call__(self, img, img_num=1):
img = self.resize_transform(img, img_num=img_num)
img = self.to_tensor_transform(img)
img = self.normalize_transform(img)
return img
def decolorization(image):
gray_image = image.convert('L')
return Image.merge(image.mode, [gray_image] * 3) if image.mode in ('RGB', 'L') else gray_image
def downscale(image, scale_factor):
new_width = int(round(image.width * scale_factor))
new_height = int(round(image.height * scale_factor))
new_width = max(1, new_width)
new_height = max(1, new_height)
return image.resize((new_width, new_height), resample=Image.BICUBIC)
def crop(image, crop_factors):
target_h, target_w = crop_factors
img_w, img_h = image.size
if target_h > img_h or target_w > img_w:
raise ValueError("Crop size exceeds image dimensions")
x = random.randint(0, img_w - target_w)
y = random.randint(0, img_h - target_h)
return image.crop((x, y, x + target_w, y + target_h)), [[x, y], [x + target_w, y + target_h]]
def motion_blur_opencv(image, kernel_size=15, angle=0):
# 线性核
kernel = np.zeros((kernel_size, kernel_size), dtype=np.float32)
kernel[kernel_size // 2, :] = np.ones(kernel_size, dtype=np.float32)
# 旋转核
center = (kernel_size / 2 - 0.5, kernel_size / 2 - 0.5)
M = cv2.getRotationMatrix2D(center, angle, 1)
rotated_kernel = cv2.warpAffine(kernel, M, (kernel_size, kernel_size))
# 归一化核
rotated_kernel /= rotated_kernel.sum() if rotated_kernel.sum() != 0 else 1
img = np.array(image)
if img.ndim == 2:
blurred = cv2.filter2D(img, -1, rotated_kernel, borderType=cv2.BORDER_REFLECT)
else:
# 对于彩色图像,各通道独立卷积
blurred = np.zeros_like(img)
for c in range(img.shape[2]):
blurred[..., c] = cv2.filter2D(img[..., c], -1, rotated_kernel, borderType=cv2.BORDER_REFLECT)
return Image.fromarray(blurred.astype(np.uint8))
def shuffle_patch(image, num_splits, gap_size=2):
"""将图像分割为块(允许尺寸不整除),随机打乱后拼接,块间保留间隙"""
h_splits, w_splits = num_splits
img_w, img_h = image.size
base_patch_h = img_h // h_splits
patch_heights = [base_patch_h] * (h_splits - 1)
patch_heights.append(img_h - sum(patch_heights))
base_patch_w = img_w // w_splits
patch_widths = [base_patch_w] * (w_splits - 1)
patch_widths.append(img_w - sum(patch_widths))
patches = []
current_y = 0
for i in range(h_splits):
current_x = 0
patch_h = patch_heights[i]
for j in range(w_splits):
patch_w = patch_widths[j]
patch = image.crop((current_x, current_y, current_x + patch_w, current_y + patch_h))
patches.append(patch)
current_x += patch_w
current_y += patch_h
random.shuffle(patches)
total_width = sum(patch_widths) + (w_splits - 1) * gap_size
total_height = sum(patch_heights) + (h_splits - 1) * gap_size
new_image = Image.new(image.mode, (total_width, total_height), color=(255, 255, 255))
current_y = 0 # 当前行的起始 Y 坐标
patch_idx = 0 # 当前处理的块索引
for i in range(h_splits):
current_x = 0 # 当前列的起始 X 坐标
patch_h = patch_heights[i] # 当前行块的高度
for j in range(w_splits):
# 取出打乱后的块
patch = patches[patch_idx]
patch_w = patch_widths[j] # 当前列块的宽度
# 粘贴块(左上角坐标为 (current_x, current_y))
new_image.paste(patch, (current_x, current_y))
# 更新 X 坐标(下一个块的起始位置 = 当前块宽度 + 间隙)
current_x += patch_w + gap_size
patch_idx += 1
# 更新 Y 坐标(下一行的起始位置 = 当前行高度 + 间隙)
current_y += patch_h + gap_size
return new_image
def inpainting(image, num_splits, blank_ratio=0.3, blank_color=(255, 255, 255)):
"""
图像分割后随机空白部分patch,用于inpainting任务
参数:
image: PIL.Image 输入图像(RGB模式)
h_splits: int 行分割数(垂直方向分割块数)
w_splits: int 列分割数(水平方向分割块数)
blank_ratio: float 空白patch的比例(0~1)
blank_color: tuple 空白区域的颜色(RGB,如白色(255,255,255))
返回:
PIL.Image 处理后拼接的图像
"""
h_splits, w_splits = num_splits
img_w, img_h = image.size
base_patch_h = img_h // h_splits
patch_heights = [base_patch_h] * (h_splits - 1)
patch_heights.append(img_h - sum(patch_heights))
base_patch_w = img_w // w_splits
patch_widths = [base_patch_w] * (w_splits - 1)
patch_widths.append(img_w - sum(patch_widths))
patches = []
current_y = 0
for i in range(h_splits):
current_x = 0
patch_h = patch_heights[i]
for j in range(w_splits):
patch_w = patch_widths[j]
patch = image.crop((current_x, current_y, current_x + patch_w, current_y + patch_h))
patches.append(patch)
current_x += patch_w
current_y += patch_h
total_patches = h_splits * w_splits
num_blank = int(total_patches * blank_ratio)
num_blank = max(0, min(num_blank, total_patches))
blank_indices = random.sample(range(total_patches), num_blank)
processed_patches = []
for idx, patch in enumerate(patches):
if idx in blank_indices:
blank_patch = Image.new("RGB", patch.size, color=blank_color)
processed_patches.append(blank_patch)
else:
processed_patches.append(patch)
# 创建结果图像(尺寸与原图一致)
result_image = Image.new("RGB", (img_w, img_h))
current_y = 0
patch_idx = 0
for i in range(h_splits):
current_x = 0
patch_h = patch_heights[i]
for j in range(w_splits):
# 取出处理后的patch
patch = processed_patches[patch_idx]
patch_w = patch_widths[j]
# 粘贴到原位置
result_image.paste(patch, (current_x, current_y))
current_x += patch_w
patch_idx += 1
current_y += patch_h
return result_image