Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team. | |
# SPDX-License-Identifier: Apache-2.0 | |
"""Qwen2 model configuration""" | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.modeling_rope_utils import rope_config_validation | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class Qwen2Config(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a | |
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
with the defaults will yield a similar configuration to that of | |
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta). | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 151936): | |
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`Qwen2Model`] | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 22016): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_key_value_heads (`int`, *optional*, defaults to 32): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
max_position_embeddings (`int`, *optional*, defaults to 32768): | |
The maximum sequence length that this model might ever be used with. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether the model's input and output word embeddings should be tied. | |
rope_theta (`float`, *optional*, defaults to 10000.0): | |
The base period of the RoPE embeddings. | |
rope_scaling (`Dict`, *optional*): | |
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type | |
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value | |
accordingly. | |
Expected contents: | |
`rope_type` (`str`): | |
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', | |
'llama3'], with 'default' being the original RoPE implementation. | |
`factor` (`float`, *optional*): | |
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In | |
most scaling types, a `factor` of x will enable the model to handle sequences of length x * | |
original maximum pre-trained length. | |
`original_max_position_embeddings` (`int`, *optional*): | |
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during | |
pretraining. | |
`attention_factor` (`float`, *optional*): | |
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention | |
computation. If unspecified, it defaults to value recommended by the implementation, using the | |
`factor` field to infer the suggested value. | |
`beta_fast` (`float`, *optional*): | |
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear | |
ramp function. If unspecified, it defaults to 32. | |
`beta_slow` (`float`, *optional*): | |
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear | |
ramp function. If unspecified, it defaults to 1. | |
`short_factor` (`List[float]`, *optional*): | |
Only used with 'longrope'. The scaling factor to be applied to short contexts (< | |
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | |
size divided by the number of attention heads divided by 2 | |
`long_factor` (`List[float]`, *optional*): | |
Only used with 'longrope'. The scaling factor to be applied to long contexts (< | |
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden | |
size divided by the number of attention heads divided by 2 | |
`low_freq_factor` (`float`, *optional*): | |
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE | |
`high_freq_factor` (`float`, *optional*): | |
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE | |
use_sliding_window (`bool`, *optional*, defaults to `False`): | |
Whether to use sliding window attention. | |
sliding_window (`int`, *optional*, defaults to 4096): | |
Sliding window attention (SWA) window size. If not specified, will default to `4096`. | |
max_window_layers (`int`, *optional*, defaults to 28): | |
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
```python | |
>>> from transformers import Qwen2Model, Qwen2Config | |
>>> # Initializing a Qwen2 style configuration | |
>>> configuration = Qwen2Config() | |
>>> # Initializing a model from the Qwen2-7B style configuration | |
>>> model = Qwen2Model(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "qwen2" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=151936, | |
hidden_size=4096, | |
intermediate_size=22016, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
num_key_value_heads=32, | |
hidden_act="silu", | |
max_position_embeddings=32768, | |
initializer_range=0.02, | |
rms_norm_eps=1e-6, | |
use_cache=True, | |
tie_word_embeddings=False, | |
rope_theta=10000.0, | |
rope_scaling=None, | |
use_sliding_window=False, | |
sliding_window=4096, | |
max_window_layers=28, | |
attention_dropout=0.0, | |
is_causal=True, | |
_attn_implementation="flash_attention_2", | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.use_sliding_window = use_sliding_window | |
self.sliding_window = sliding_window if use_sliding_window else None | |
self.max_window_layers = max_window_layers | |
# for backward compatibility | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
self.rope_scaling = rope_scaling | |
self.attention_dropout = attention_dropout | |
self.is_causal = is_causal | |
self._attn_implementation = _attn_implementation | |
# Validate the correctness of rotary position embeddings parameters | |
# BC: if there is a 'type' field, move it to 'rope_type'. | |
if self.rope_scaling is not None and "type" in self.rope_scaling: | |
self.rope_scaling["rope_type"] = self.rope_scaling["type"] | |
rope_config_validation(self) | |
super().__init__( | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |