Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The Qwen Team and The HuggingFace Inc. team. | |
# SPDX-License-Identifier: Apache-2.0 | |
"""Tokenization classes for Qwen2.""" | |
from typing import Optional, Tuple | |
from transformers.tokenization_utils import AddedToken | |
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast | |
from transformers.utils import logging | |
from .tokenization_qwen2 import Qwen2Tokenizer | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = { | |
"vocab_file": "vocab.json", | |
"merges_file": "merges.txt", | |
"tokenizer_file": "tokenizer.json", | |
} | |
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768} | |
class Qwen2TokenizerFast(PreTrainedTokenizerFast): | |
""" | |
Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level | |
Byte-Pair-Encoding. | |
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will | |
be encoded differently whether it is at the beginning of the sentence (without space) or not: | |
```python | |
>>> from transformers import Qwen2TokenizerFast | |
>>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer") | |
>>> tokenizer("Hello world")["input_ids"] | |
[9707, 1879] | |
>>> tokenizer(" Hello world")["input_ids"] | |
[21927, 1879] | |
``` | |
This is expected. | |
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should | |
refer to this superclass for more information regarding those methods. | |
Args: | |
vocab_file (`str`, *optional*): | |
Path to the vocabulary file. | |
merges_file (`str`, *optional*): | |
Path to the merges file. | |
tokenizer_file (`str`, *optional*): | |
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that | |
contains everything needed to load the tokenizer. | |
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this | |
token instead. Not applicable to this tokenizer. | |
bos_token (`str`, *optional*): | |
The beginning of sequence token. Not applicable for this tokenizer. | |
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
The end of sequence token. | |
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): | |
The token used for padding, for example when batching sequences of different lengths. | |
""" | |
vocab_files_names = VOCAB_FILES_NAMES | |
model_input_names = ["input_ids", "attention_mask"] | |
slow_tokenizer_class = Qwen2Tokenizer | |
def __init__( | |
self, | |
vocab_file=None, | |
merges_file=None, | |
tokenizer_file=None, | |
unk_token="<|endoftext|>", | |
bos_token=None, | |
eos_token="<|endoftext|>", | |
pad_token="<|endoftext|>", | |
**kwargs, | |
): | |
# We need to at least pass vocab_file and merges_file to base class | |
# in case a slow tokenizer needs to be initialized; other can be | |
# configured through files. | |
# following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token | |
bos_token = ( | |
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False) | |
if isinstance(bos_token, str) | |
else bos_token | |
) | |
eos_token = ( | |
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False) | |
if isinstance(eos_token, str) | |
else eos_token | |
) | |
unk_token = ( | |
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False) | |
if isinstance(unk_token, str) | |
else unk_token | |
) | |
pad_token = ( | |
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False) | |
if isinstance(pad_token, str) | |
else pad_token | |
) | |
super().__init__( | |
vocab_file=vocab_file, | |
merges_file=merges_file, | |
tokenizer_file=tokenizer_file, | |
unk_token=unk_token, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
pad_token=pad_token, | |
**kwargs, | |
) | |
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
files = self._tokenizer.model.save(save_directory, name=filename_prefix) | |
return tuple(files) | |