Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""App | |
Automatically generated by Colab. | |
""" | |
# Note: The eSpeak installation code has been removed. | |
# Instead, ensure that "espeak" is listed in your apt.txt file for Hugging Face Spaces. | |
import gradio as gr | |
import numpy as np | |
from transformers import pipeline | |
import os | |
import groq | |
# Updated imports to address LangChain deprecation warnings: | |
from langchain_groq import ChatGroq | |
from langchain.schema import HumanMessage | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.docstore.document import Document | |
# Importing chardet (make sure to add chardet to your requirements.txt) | |
import chardet | |
import fitz # PyMuPDF for PDFs | |
import docx # python-docx for Word files | |
import gtts # Google Text-to-Speech library | |
from pptx import Presentation # python-pptx for PowerPoint files | |
import re | |
# Initialize Whisper model for speech-to-text | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") | |
# Set API Key (Ensure it's stored securely in an environment variable) | |
groq.api_key = os.getenv("GROQ_API_KEY") # Replace with a valid API key | |
# Initialize Chat Model | |
chat_model = ChatGroq(model_name="DeepSeek-R1-Distill-Llama-70b", api_key=groq.api_key) | |
# Initialize Embeddings | |
embedding_model = HuggingFaceEmbeddings() | |
# Initialize ChromaDB | |
vectorstore = Chroma(embedding_function=embedding_model) | |
# Prompt for quiz generation with added remark | |
quiz_prompt = """ | |
You are an AI assistant specialized in education and assessment creation. Given an uploaded document or text, generate a quiz with a mix of multiple-choice questions (MCQs) and fill-in-the-blank questions. The quiz should be directly based on the key concepts, facts, and details from the provided material. | |
Remove all unnecessary formatting generated by the LLM, including <think> tags, asterisks, markdown formatting, and any bold or italic text, as well as **, ###, ##, and # tags. | |
For each question: | |
- Provide 4 answer choices (for MCQs), with only one correct answer. | |
- Ensure fill-in-the-blank questions focus on key terms, phrases, or concepts from the document. | |
- Include an answer key for all questions. | |
- Ensure questions vary in difficulty and encourage comprehension rather than memorization. | |
- Additionally, implement an instant feedback mechanism: | |
- When a user selects an answer, indicate whether it is correct or incorrect. | |
- If incorrect, provide a brief explanation from the document to guide learning. | |
- Ensure responses are concise and educational to enhance understanding. | |
Output Example: | |
1. Fill in the blank: The LLM Agent framework has a central decision-making unit called the _______________________. | |
Answer: Agent Core | |
Feedback: The Agent Core is the central component of the LLM Agent framework, responsible for managing goals, tool instructions, planning modules, memory integration, and agent persona. | |
2. What is the main limitation of LLM-based applications? | |
a) Limited token capacity | |
b) Lack of domain expertise | |
c) Prone to hallucination | |
d) All of the above | |
Answer: d) All of the above | |
Feedback: LLM-based applications have several limitations, including limited token capacity, lack of domain expertise, and being prone to hallucination, among others. | |
""" | |
# Function to clean AI response by removing unwanted formatting | |
def clean_response(response): | |
"""Removes <think> tags, asterisks, and markdown formatting.""" | |
cleaned_text = re.sub(r"<think>.*?</think>", "", response, flags=re.DOTALL) | |
cleaned_text = re.sub(r"(\*\*|\*)", "", cleaned_text) | |
cleaned_text = re.sub(r"^#+\s*", "", cleaned_text, flags=re.MULTILINE) | |
return cleaned_text.strip() | |
# Function to generate quiz based on content | |
def generate_quiz(content): | |
prompt = f"{quiz_prompt}\n\nDocument content:\n{content}" | |
response = chat_model([HumanMessage(content=prompt)]) | |
cleaned_response = clean_response(response.content) | |
return cleaned_response | |
# Function to retrieve relevant documents from vectorstore based on user query | |
def retrieve_documents(query): | |
results = vectorstore.similarity_search(query, k=3) | |
return [doc.page_content for doc in results] | |
# Function to handle chatbot interactions | |
def chat_with_groq(user_input): | |
try: | |
relevant_docs = retrieve_documents(user_input) | |
context = "\n".join(relevant_docs) | |
response = chat_model([HumanMessage(content=user_input + "\n\nContext:\n" + context)]) | |
cleaned_response_text = clean_response(response.content) | |
audio_file = speech_playback(cleaned_response_text) | |
return cleaned_response_text, audio_file | |
except Exception as e: | |
return f"Error: {str(e)}", None | |
# Function to play response as speech using gTTS | |
def speech_playback(text): | |
tts = gtts.gTTS(text, lang='en') | |
audio_file = "output_audio.mp3" | |
tts.save(audio_file) | |
return audio_file | |
# Function to detect encoding safely | |
def detect_encoding(file_path): | |
try: | |
with open(file_path, "rb") as f: | |
raw_data = f.read(4096) | |
detected = chardet.detect(raw_data) | |
encoding = detected["encoding"] | |
return encoding if encoding else "utf-8" | |
except Exception: | |
return "utf-8" | |
# Function to extract text from PDF | |
def extract_text_from_pdf(pdf_path): | |
try: | |
doc = fitz.open(pdf_path) | |
text = "\n".join([page.get_text("text") for page in doc]) | |
return text if text.strip() else "No extractable text found." | |
except Exception as e: | |
return f"Error extracting text from PDF: {str(e)}" | |
# Function to extract text from Word files (.docx) | |
def extract_text_from_docx(docx_path): | |
try: | |
doc = docx.Document(docx_path) | |
text = "\n".join([para.text for para in doc.paragraphs]) | |
return text if text.strip() else "No extractable text found." | |
except Exception as e: | |
return f"Error extracting text from Word document: {str(e)}" | |
# Function to extract text from PowerPoint files (.pptx) | |
def extract_text_from_pptx(pptx_path): | |
try: | |
presentation = Presentation(pptx_path) | |
text = "" | |
for slide in presentation.slides: | |
for shape in slide.shapes: | |
if hasattr(shape, "text"): | |
text += shape.text + "\n" | |
return text if text.strip() else "No extractable text found." | |
except Exception as e: | |
return f"Error extracting text from PowerPoint: {str(e)}" | |
# Function to process documents safely | |
def process_document(file): | |
try: | |
file_extension = os.path.splitext(file.name)[-1].lower() | |
if file_extension in [".png", ".jpg", ".jpeg"]: | |
return "Error: Images cannot be processed for text extraction." | |
if file_extension == ".pdf": | |
content = extract_text_from_pdf(file.name) | |
elif file_extension == ".docx": | |
content = extract_text_from_docx(file.name) | |
elif file_extension == ".pptx": | |
content = extract_text_from_pptx(file.name) | |
else: | |
encoding = detect_encoding(file.name) | |
with open(file.name, "r", encoding=encoding, errors="replace") as f: | |
content = f.read() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) | |
documents = [Document(page_content=chunk) for chunk in text_splitter.split_text(content)] | |
vectorstore.add_documents(documents) | |
quiz = generate_quiz(content) | |
return f"Document processed successfully (File Type: {file_extension}). Quiz generated:\n{quiz}" | |
except Exception as e: | |
return f"Error processing document: {str(e)}" | |
# Function to handle speech-to-text conversion | |
def transcribe_audio(audio): | |
sr, y = audio | |
if y.ndim > 1: | |
y = y.mean(axis=1) | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
return transcriber({"sampling_rate": sr, "raw": y})["text"] | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.HTML("<h2 style='text-align: center;'>AI Tutor</h2>") | |
gr.HTML(""" | |
<div style="text-align: center; margin-bottom: 20px;"> | |
<img src="https://img.freepik.com/premium-photo/little-girl-is-seen-sitting-front-laptop-computer-engaged-with-nearby-robot-robot-assistant-helping-child-with-homework-ai-generated_585735-12266.jpg" style="max-width: 60%; height: auto; border-radius: 10px; box-shadow: 0 4px 8px rgba(0,0,0,0.2);" /> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
audio_input = gr.Audio(type="numpy", label="Record Audio") | |
transcription_output = gr.Textbox(label="Transcription") | |
user_input = gr.Textbox(label="Ask a question") | |
chat_output = gr.Textbox(label="Response") | |
audio_output = gr.Audio(label="Audio Playback") | |
submit_btn = gr.Button("Ask") | |
with gr.Column(): | |
file_upload = gr.File(label="Upload a document") | |
process_status = gr.Textbox(label="Processing Status", interactive=False) | |
process_btn = gr.Button("Process Document") | |
audio_input.change(fn=transcribe_audio, inputs=audio_input, outputs=transcription_output) | |
transcription_output.change(fn=lambda x: x, inputs=transcription_output, outputs=user_input) | |
submit_btn.click(chat_with_groq, inputs=user_input, outputs=[chat_output, audio_output]) | |
process_btn.click(process_document, inputs=file_upload, outputs=process_status) | |
# Launch the Gradio app | |
demo.launch() | |