Spaces:
Sleeping
Sleeping
File size: 11,039 Bytes
e987b6f 9906ef6 705a9df 9906ef6 36a9704 9906ef6 296df46 9906ef6 038b9bf 9906ef6 296df46 9906ef6 418a846 038b9bf 9906ef6 e987b6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# -*- coding: utf-8 -*-
"""app
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1GzjDFYPEtsFsBFnhi3x3B0vWyCE-Dtpb
"""
import gradio as gr
import numpy as np
from transformers import pipeline
import os
import time
import groq
import uuid # For generating unique filenames
# Updated imports to address LangChain deprecation warnings:
from langchain_groq import ChatGroq
from langchain.schema import HumanMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.docstore.document import Document
# Importing chardet (make sure to add chardet to your requirements.txt)
import chardet
import fitz # PyMuPDF for PDFs
import docx # python-docx for Word files
import gtts # Google Text-to-Speech library
from pptx import Presentation # python-pptx for PowerPoint files
import re
# Initialize Whisper model for speech-to-text
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
# Set API Key (Ensure it's stored securely in an environment variable)
groq.api_key = os.getenv("GROQ_API_KEY") # Replace with a valid API key
# Initialize Chat Model
chat_model = ChatGroq(model_name="deepseek-r1-distill-qwen-32b", api_key=groq.api_key)
# Initialize Embeddings and chromaDB
embedding_model = HuggingFaceEmbeddings()
vectorstore = Chroma(embedding_function=embedding_model)
# Short-term memory for the LLM
chat_memory = []
# Prompt for quiz generation with added remark
quiz_prompt = """
You are an AI assistant specialized in education and assessment creation. Given an uploaded document or text, generate a quiz with a mix of multiple-choice questions (MCQs) and fill-in-the-blank questions. The quiz should be directly based on the key concepts, facts, and details from the provided material.
Remove all unnecessary formatting generated by the LLM, including <think> tags, asterisks, markdown formatting, and any bold or italic text, as well as **, ###, ##, and # tags.
Please generate 20 Questions.
For each question:
- Provide 4 answer choices (for MCQs), with only one correct answer.
- Ensure fill-in-the-blank questions focus on key terms, phrases, or concepts from the document.
- Include an answer key for all questions.
- Ensure questions vary in difficulty and encourage comprehension rather than memorization.
- Additionally, implement an instant feedback mechanism:
- When a user selects an answer, indicate whether it is correct or incorrect.
- If incorrect, provide a brief explanation from the document to guide learning.
- Ensure responses are concise and educational to enhance understanding.
Output Example:
1. Fill in the blank: The LLM Agent framework has a central decision-making unit called the _______________________.
Answer: Agent Core
Feedback: The Agent Core is the central component of the LLM Agent framework, responsible for managing goals, tool instructions, planning modules, memory integration, and agent persona.
2. What is the main limitation of LLM-based applications?
a) Limited token capacity
b) Lack of domain expertise
c) Prone to hallucination
d) All of the above
Answer: d) All of the above
Feedback: LLM-based applications have several limitations, including limited token capacity, lack of domain expertise, and being prone to hallucination, among others.
"""
# Function to clean AI response by removing unwanted formatting
def clean_response(response):
"""Removes <think> tags, asterisks, and markdown formatting."""
cleaned_text = re.sub(r"<think>.*?</think>", "", response, flags=re.DOTALL)
cleaned_text = re.sub(r"(\*\*|\*|\[|\]|\\n)", "", cleaned_text)
cleaned_text = re.sub(r"^##+\s*", "", cleaned_text, flags=re.MULTILINE)
cleaned_text = re.sub(r"\\", "", cleaned_text)
cleaned_text = re.sub(r"---", "", cleaned_text)
return cleaned_text.strip()
# Function to generate quiz based on content
def generate_quiz(content):
prompt = f"{quiz_prompt}\n\nDocument content:\n{content}"
response = chat_model([HumanMessage(content=prompt)])
cleaned_response = clean_response(response.content)
return cleaned_response
# Function to retrieve relevant documents from vectorstore based on user query
def retrieve_documents(query):
results = vectorstore.similarity_search(query, k=3)
return [doc.page_content for doc in results]
# Function to check content in vector store
def check_vectorstore():
# Check the content of vectorstore by retrieving some documents
results = vectorstore.similarity_search("test", k=3)
return [doc.page_content for doc in results]
# RAG Function: Retrieve context and generate response based on context and query
def rag_query_handler(user_input):
try:
# Retrieve relevant documents for additional context (RAG - retrieval-augmented generation)
relevant_docs = retrieve_documents(user_input)
context = "\n".join(relevant_docs) if relevant_docs else "No relevant documents found."
# Combine the context with the user input and conversation history for the final prompt
system_prompt = "You are a helpful AI assistant. Answer questions accurately and concisely."
conversation_history = "\n".join(chat_memory[-10:]) # Keep the last 10 exchanges
prompt = f"{system_prompt}\n\nConversation History:\n{conversation_history}\n\nUser Input: {user_input}\n\nContext:\n{context}"
# Call the chat model for RAG generation (Retrieve + Generate)
response = chat_model([HumanMessage(content=prompt)])
# Clean response to remove any unwanted formatting
cleaned_response_text = clean_response(response.content)
# Append conversation history for future queries
chat_memory.append(f"User: {user_input}")
chat_memory.append(f"AI: {cleaned_response_text}")
# Convert response to speech
audio_file = speech_playback(cleaned_response_text)
# Return both chat response and audio file path
return [(user_input, cleaned_response_text)], audio_file # Return as a tuple
except Exception as e:
return [("Error", str(e))], None
# Function to play response as speech using gTTS
def speech_playback(text):
try:
# Generate a unique filename for each audio file
unique_id = str(uuid.uuid4())
audio_file = f"output_audio_{unique_id}.mp3"
# Convert text to speech
tts = gtts.gTTS(text, lang='zh-CN')
tts.save(audio_file)
# Return the path to the audio file
return audio_file
except Exception as e:
print(f"Error in speech_playback: {e}")
return None
# Function to detect encoding safely
def detect_encoding(file_path):
try:
with open(file_path, "rb") as f:
raw_data = f.read(4096)
detected = chardet.detect(raw_data)
encoding = detected["encoding"]
return encoding if encoding else "utf-8"
except Exception:
return "utf-8"
# Function to extract text from PDF
def extract_text_from_pdf(pdf_path):
try:
doc = fitz.open(pdf_path)
text = "\n".join([page.get_text("text") for page in doc])
return text if text.strip() else "No extractable text found."
except Exception as e:
return f"Error extracting text from PDF: {str(e)}"
# Function to extract text from Word files (.docx)
def extract_text_from_docx(docx_path):
try:
doc = docx.Document(docx_path)
text = "\n".join([para.text for para in doc.paragraphs])
return text if text.strip() else "No extractable text found."
except Exception as e:
return f"Error extracting text from Word document: {str(e)}"
# Function to extract text from PowerPoint files (.pptx)
def extract_text_from_pptx(pptx_path):
try:
presentation = Presentation(pptx_path)
text = ""
for slide in presentation.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text if text.strip() else "No extractable text found."
except Exception as e:
return f"Error extracting text from PowerPoint: {str(e)}"
# Function to process documents safely
def process_document(file):
try:
file_extension = os.path.splitext(file.name)[-1].lower()
if file_extension in [".png", ".jpg", ".jpeg"]:
return "Error: Images cannot be processed for text extraction."
if file_extension == ".pdf":
content = extract_text_from_pdf(file.name)
elif file_extension == ".docx":
content = extract_text_from_docx(file.name)
elif file_extension == ".pptx":
content = extract_text_from_pptx(file.name)
else:
encoding = detect_encoding(file.name)
with open(file.name, "r", encoding=encoding, errors="replace") as f:
content = f.read()
# Split content into chunks for vector store indexing
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
documents = [Document(page_content=chunk) for chunk in text_splitter.split_text(content)]
# Add documents to vectorstore
vectorstore.add_documents(documents)
# Check the content in vectorstore
vectorstore_content = check_vectorstore()
# Generate quiz based on document content
quiz = generate_quiz(content)
return f"Document processed successfully (File Type: {file_extension}). Quiz generated:\n{quiz}\n\nVectorstore Content:\n{vectorstore_content}"
except Exception as e:
return f"Error processing document: {str(e)}"
# Create Gradio interface for uploading files and interacting with the model
def chatbot_interface():
with gr.Blocks() as demo:
with gr.Tab("Upload Document [Test] (Vector + RAG)"):
with gr.Column():
file_input = gr.File(label="Upload Document")
submit_button = gr.Button("Submit")
result_output = gr.Textbox(label="Processed Output", interactive=False)
#audio_output = gr.Audio(label="Generated Speech")
with gr.Tab("Chat with AI or Query"):
with gr.Column():
user_input = gr.Textbox(label="Ask a Question")
chat_button = gr.Button("Ask")
chat_output = gr.Textbox(label="Chat Response", interactive=False, elem_id="chat_output", lines=10, # Number of lines for the Textbox
max_lines=20, placeholder="Your response will appear here...")
audio_output = gr.Audio(label="Output Speech")
submit_button.click(process_document, inputs=file_input, outputs=result_output)
chat_button.click(rag_query_handler, inputs=user_input, outputs=[chat_output, audio_output])
demo.launch()
# Run chatbot interface
chatbot_interface()
|