File size: 10,953 Bytes
f13d9a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# -*- coding: utf-8 -*-
"""parsing.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1thvkAz498jADcaVirJG91V-3-XBhdkq1
"""
import requests
from bs4 import BeautifulSoup
import re
import os
import pandas as pd
import numpy as np
from tqdm import tqdm
def get_transcripts_from_url(url):
# Send a GET request to the URL and retrieve the webpage content
response = requests.get(url)
# Parse the HTML content using Beautiful Soup
soup = BeautifulSoup(response.content, 'html.parser')
# Find elements by tag name
titles = soup.find_all('li')
# names for series
transcript_paths = []
# Extract text from elements
for title in titles:
a = title.find('a')
path = a.get("href")
transcript_paths.append("https://fangj.github.io/friends/" + path)
return transcript_paths
def get_text_from_html(url):
path = url
response = requests.get(path)
html_content = response.text
# Parse HTML content
soup = BeautifulSoup(html_content, 'html.parser')
transcript = soup.find_all('p')
transcript_name = path.split("/")[-1].replace(".html", ".txt")
with open(os.path.join("friends_raw_scripts", transcript_name), 'w', encoding='utf-8') as file:
text = soup.get_text(strip=False).lower().replace("'", ""). replace('"', "").replace("\xa0", "")
file.write(text + "\n")
return transcript_name
def clean_and_write_text(transcript_name):
char = []
texts = []
flag = None
pattern = re.compile(r'\b\w+:')
with open(os.path.join("friends_raw_scripts", transcript_name), 'r', encoding='utf-8') as file:
final_transcript = file.readlines()
skip_lines = 10
pattern = re.compile(r'\b\w+:')
scene_words = ["commercial break", "closing credits", "opening credits", "end"]
for ind in range(1, len(final_transcript) - 1):
final_list = []
pre_line = final_transcript[ind - 1].strip()
cur_line = final_transcript[ind].strip()
next_line = final_transcript[ind + 1].strip()
next_condition = re.sub(r"\([^()]*\)|\[[^\[\]]*\]", '', next_line).strip()
cur_conditon = re.sub(r"\([^()]*\)|\[[^\[\]]*\]", '', cur_line).strip()
if sum([bool(pre_line), bool(cur_line), bool(next_line)]) == 1:
continue
elif cur_line in scene_words:
continue
elif "by:" in cur_line or "note:" in cur_line:
continue
elif "[" in cur_line or "]" in cur_line:
continue
elif not cur_conditon:
continue
elif pattern.search(cur_line) and flag == None:
name, text = cur_line.split(":", maxsplit=1)
char.append(name)
text = re.sub(r'\([^)]*\)', '', text)
text = text.strip()
flag = "char"
if pattern.search(next_line) or not next_condition or next_line in scene_words or "[" in next_line:
texts.append(text)
flag = None
if len(char) != len(texts):
print(ind)
print(char[-1], texts[-1])
elif cur_line and flag == 'char':
text += " " + cur_line
if pattern.search(next_line) or not next_condition or next_line in scene_words or "[" in next_line:
text = re.sub(r"\([^()]*\)|\[[^\[\]]*\]", '', text).strip()
texts.append(text)
flag = None
if len(char) != len(texts):
print(ind)
print(char[-1], texts[-1])
new_name = "pre_" + transcript_name
with open(os.path.join("friends_preprocessed_scripts", new_name), 'w', encoding='utf-8') as file:
for c, d in zip(char, texts):
file.write(f"{c}: {d}\n")
raw_texts_exists = False # change on False to download transcripts and preprocess them
# parse data from website to get txt transcripts
transcript_paths = get_transcripts_from_url("https://fangj.github.io/friends/")
transcript_paths[:10]
os.makedirs("friends_preprocessed_scripts", exist_ok=True)
os.makedirs("friends_raw_scripts", exist_ok=True)
# define list with certain scripts from south park
# dir_list = [file for file in os.listdir("./raw_scripts")]
if not raw_texts_exists:
print("Parse all scripts from this website https://fangj.github.io/friends/")
for path in tqdm(transcript_paths, desc='Total'):
transcript_name = get_text_from_html(path)
clean_and_write_text(transcript_name)
dir_list = [file for file in os.listdir("./friends_preprocessed_scripts")]
def df_scripts(path):
"""function take preprocessed_script.txt from dir and create dataframes"""
chars = []
texts = []
with open(os.path.join("friends_preprocessed_scripts", path), 'r', encoding="utf-8") as file:
for line in file:
char, text = line.split(":", 1)
chars.append(char)
texts.append(text.strip().lower())
df_name = path.replace("prep_SP_", "df_").replace(".txt", ".csv")
df = pd.DataFrame({'Characters': chars, 'Dialogs': texts})
df.to_csv(os.path.join("dataframes", "friends", df_name), index=False)
os.makedirs("dataframes/friends", exist_ok=True)
for preprocessed_script in dir_list:
df_scripts(preprocessed_script)
def collect_df(threshold=10):
"""function concatenate dataframes in one single dataframe"""
dfs = []
for file in os.listdir("dataframes/friends"):
dfs.append(pd.read_csv(os.path.join("dataframes", "friends", file)))
df = pd.concat(dfs, ignore_index=True).dropna().reset_index(drop=True)
# find characters with more than 10 texts
high_chars = df.Characters.value_counts()
high_chars_ind = high_chars[high_chars > threshold].index
df = df[df["Characters"].isin(high_chars_ind)]
# optional function to clean dialogs
print(f"Number of characters in dataframe {len(df.Characters.value_counts())}")
return df
"""### Which most frequent characters we can meet in the movie"""
def form_df(df, char):
# get indices where character is favorite_character
favorite_character_df = df[df.Characters == char] # .dropna()
favorite_character_ind = favorite_character_df.index.tolist()
# get indices where speech could be to favorite charecter
text_to_favorite_character_ind = (np.array(favorite_character_ind) - 1).tolist()
# form datasets with favorite charecter's dialogs and possible dialogs to favorite charecter
# favorite_character_dialog = df.iloc[favorite_character_ind] restore
favorite_character_dialog = df[df.index.isin(favorite_character_ind)]
# text_to_favorite_character = df.iloc[text_to_favorite_character_ind] restore# .dropna(subset=["Dialogs"])
text_to_favorite_character = df[df.index.isin(text_to_favorite_character_ind)]
# remove from text to cartman rows where speak Cartman
text_to_favorite_character = text_to_favorite_character[text_to_favorite_character["Characters"] != char]
# save data for debugging. Uncomment if necessary
# favorite_character_dialog.to_csv("test_favotite.csv", index=favorite_character_ind)
# text_to_favorite_character.to_csv("test_question.csv", index=text_to_favorite_character_ind)
# find in dialog_to_cartman lines with char "?"
# mask = text_to_favorite_character['Dialogs'].str.contains('\?')
# question_to_favorite_character = text_to_favorite_character[mask]
# if we want to get all texts to our favorite actor, then we leave text_to_favorite_character
question_to_favorite_character = text_to_favorite_character
# save data for debugging. Uncomment if necessary
# question_to_favorite_character.to_csv("question_to_favorite_character.csv")
question_to_favorite_character_ind = question_to_favorite_character.index.tolist()
true_answers_ind = (np.array(question_to_favorite_character_ind) + 1).tolist()
# favorite_character_answer = favorite_character_dialog.loc[true_answers_ind]
favorite_character_answer = favorite_character_dialog[favorite_character_dialog.index.isin(true_answers_ind)]
# save data for debugging. Uncomment if necessary
favorite_character_answer.to_csv("favorite_character_answer.csv")
# change name of columns for final dataframe
question_to_favorite_character = question_to_favorite_character.rename(
columns={"Characters": "questioner", "Dialogs": "question"})
favorite_character_answer = favorite_character_answer.rename(columns={"Characters": "answerer", "Dialogs": "answer"}) # char or answerer !!!!!!
question_to_favorite_character.reset_index(inplace=True, drop=True)
favorite_character_answer.reset_index(inplace=True, drop=True)
df = pd.concat([question_to_favorite_character, favorite_character_answer], axis=1)
return df
def form_df_negative(df, df_char, char):
# get from form_df true data, but without labels. At this step define label = 1 for all sentences
true_label = pd.DataFrame({"label": np.ones(shape=len(df_char), dtype=np.int8)})
# add from the right side new columns with labels
df_true_labels = pd.concat([df_char, true_label], axis=1)
# find text for this random_character and without questions
# favorite_character_df = df[df.Characters == random_char].str.contains('\?')
random_character_df = df[df.Characters != char].reset_index(drop=True)
indices = np.random.choice(np.arange(len(random_character_df)), size=(len(df_true_labels)), replace=False)
random_character_df = random_character_df[random_character_df.index.isin(indices)]
df_negative_labels = df_true_labels.drop(columns="label", axis=1)
df_negative_labels["answer"] = random_character_df["Dialogs"].reset_index(drop=True)
df_negative_labels = df_negative_labels.rename(columns={"Dialogs": "question"})
negative_label = pd.DataFrame({"label": np.zeros(shape=len(df_char), dtype=np.int8)})
df_negative_labels = pd.concat([df_negative_labels, negative_label], axis=1)
# fincal concatenation of dataframes with true and negative labels
final_df = pd.concat([df_negative_labels, df_true_labels], axis=0)
# How to shuffle data in pandas dataframe
final_df = final_df.sample(frac=1).reset_index(drop=True)
return final_df
"""## Choose your favorite character"""
# concatenate data in one single dataframe
df = collect_df(threshold=10)
df.to_csv("full_trancscripts.csv", index=False)
# form the final dataset for tf-idf / word2vec, which no need labels between strings
characters = ["rachel", "ross", "chandler", "monica", "joey", "phoebe"]
for char in tqdm(characters):
df_char = form_df(df, char)
# create final dataframe
df_char.to_csv(char + "_friends.csv", index=False)
df_char_label = form_df_negative(df, df_char, char)
df_char_label.to_csv(char + "_friends_label.csv", index=False)
print("script created")
|