Spaces:
Running
Running
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
AutoEvalColumn, | |
singletable_AutoEvalColumn, | |
singlecolumn_AutoEvalColumn, | |
ModelType, | |
fields, | |
) | |
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_leaderboard_df | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception as e: | |
print(f"Error downloading results: {e}") | |
# Create the directory if it doesn't exist | |
import os | |
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True) | |
SINGLECOLUMN_LEADERBOARD_DF, SINGLETABLE_LEADERBOARD_DF, MULTITABLE_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS) | |
def init_multitable_leaderboard(dataframe): | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[AutoEvalColumn.model.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
filter_columns=[ | |
ColumnFilter(AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"), | |
ColumnFilter(AutoEvalColumn.model.name, type="checkboxgroup", label="Models"), | |
], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
def init_singletable_leaderboard(dataframe): | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(singletable_AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(singletable_AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(singletable_AutoEvalColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[singletable_AutoEvalColumn.model.name], | |
hide_columns=[c.name for c in fields(singletable_AutoEvalColumn) if c.hidden], | |
filter_columns=[ | |
ColumnFilter(singletable_AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"), | |
ColumnFilter(singletable_AutoEvalColumn.model.name, type="checkboxgroup", label="Models"), | |
], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
def init_singlecolumn_leaderboard(dataframe): | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(singlecolumn_AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[singlecolumn_AutoEvalColumn.model.name], | |
hide_columns=[c.name for c in fields(singlecolumn_AutoEvalColumn) if c.hidden], | |
filter_columns=[ | |
ColumnFilter(singlecolumn_AutoEvalColumn.dataset.name, type="checkboxgroup", label="Datasets"), | |
ColumnFilter(singlecolumn_AutoEvalColumn.table.name, type="checkboxgroup", label="Tables"), | |
ColumnFilter(singlecolumn_AutoEvalColumn.model.name, type="checkboxgroup", label="Models"), | |
], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π MultiTable", elem_id="syntherela-benchmark-tab-table", id=0): | |
leaderboard = init_multitable_leaderboard(MULTITABLE_LEADERBOARD_DF) | |
with gr.TabItem("π SingleTable", elem_id="syntherela-benchmark-tab-table", id=1): | |
singletable_leaderboard = init_singletable_leaderboard(SINGLETABLE_LEADERBOARD_DF) | |
with gr.TabItem("π SingleColumn", elem_id="syntherela-benchmark-tab-table", id=2): | |
singlecolumn_leaderboard = init_singlecolumn_leaderboard(SINGLECOLUMN_LEADERBOARD_DF) | |
with gr.TabItem("π About", elem_id="syntherela-benchmark-tab-table", id=3): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=8, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch() |