b4one's picture
initial add files commit
bec68b1
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from ultralytics import YOLO
from PIL import Image
import cv2
import mediapipe as mp
import numpy as np
import io
import tempfile
import os
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # In production, specify your allowed domains
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Health Check Endpoint
@app.get("/")
def root():
"""
Health check endpoint to verify that the API is running.
"""
return {"message": "YOLO11 Emotion Detection API is live!"}
# Load your custom YOLO emotion detection model
try:
emotion_model = YOLO("model/yolo11m_affectnet_best.pt")
except Exception as e:
raise Exception(f"Error loading emotion model: {e}")
def detect_emotions(image):
"""
Given an OpenCV BGR image, detect faces using Mediapipe and perform emotion detection
on each face crop using the YOLO model.
Returns a list of detections with bounding box and emotion details.
"""
height, width, _ = image.shape
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
detections_list = []
mp_face_detection = mp.solutions.face_detection
with mp_face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5) as face_detection:
results = face_detection.process(image_rgb)
if results.detections:
for detection in results.detections:
bbox = detection.location_data.relative_bounding_box
x_min = int(bbox.xmin * width)
y_min = int(bbox.ymin * height)
box_width = int(bbox.width * width)
box_height = int(bbox.height * height)
x_max = x_min + box_width
y_max = y_min + box_height
x_min = max(0, x_min)
y_min = max(0, y_min)
x_max = min(width, x_max)
y_max = min(height, y_max)
face_crop = image[y_min:y_max, x_min:x_max]
if face_crop.size == 0:
continue
face_crop_rgb = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)
face_pil = Image.fromarray(face_crop_rgb)
emotion_results = emotion_model.predict(source=face_pil, conf=0.5)
if len(emotion_results) > 0 and len(emotion_results[0].boxes) > 0:
box_detect = emotion_results[0].boxes[0]
emotion_label = emotion_results[0].names[int(box_detect.cls)]
confidence = float(box_detect.conf)
else:
emotion_label = "N/A"
confidence = 0.0
detection_info = {
"bbox": {
"x_min": x_min,
"y_min": y_min,
"x_max": x_max,
"y_max": y_max
},
"emotion": emotion_label,
"confidence": confidence
}
detections_list.append(detection_info)
return detections_list
@app.post("/predict_frame")
async def predict_frame(file: UploadFile = File(...)):
"""
Accept an image file, run face and emotion detection, annotate the image with bounding boxes
and emotion labels, and return the annotated image as PNG.
"""
if not file.filename.lower().endswith(('.jpg', '.jpeg', '.png')):
raise HTTPException(status_code=400, detail="Invalid file format. Only JPG, JPEG, and PNG are allowed.")
try:
contents = await file.read()
nparr = np.frombuffer(contents, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if image is None:
raise HTTPException(status_code=400, detail="Invalid image file.")
detections = detect_emotions(image)
for det in detections:
bbox = det["bbox"]
label_text = f'{det["emotion"]} ({det["confidence"]:.2f})'
cv2.rectangle(image, (bbox["x_min"], bbox["y_min"]), (bbox["x_max"], bbox["y_max"]), (0, 255, 0), 2)
cv2.putText(image, label_text, (bbox["x_min"], bbox["y_min"] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
is_success, im_buf_arr = cv2.imencode(".png", image)
if not is_success:
raise HTTPException(status_code=500, detail="Error encoding image.")
byte_im = im_buf_arr.tobytes()
buf = io.BytesIO(byte_im)
buf.seek(0)
return StreamingResponse(buf, media_type="image/png")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
finally:
await file.close()
@app.post("/predict_emotion")
async def predict_emotion(file: UploadFile = File(...)):
"""
Accept an image file, run face and emotion detection, and return the results as JSON.
The JSON response includes a list of detections with bounding box coordinates, emotion label, and confidence score.
"""
if not file.filename.lower().endswith(('.jpg', '.jpeg', '.png')):
raise HTTPException(status_code=400, detail="Invalid file format. Only JPG, JPEG, and PNG are allowed.")
try:
contents = await file.read()
nparr = np.frombuffer(contents, np.uint8)
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if image is None:
raise HTTPException(status_code=400, detail="Invalid image file.")
detections = detect_emotions(image)
return {"detections": detections}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
finally:
await file.close()
@app.post("/predict_video")
async def predict_video(file: UploadFile = File(...)):
"""
Accept a video file, process it frame-by-frame with face and emotion detection,
annotate each frame with bounding boxes and emotion labels, and return the annotated
video as an MP4 file.
"""
if not file.filename.lower().endswith(('.mp4', '.avi', '.mov')):
raise HTTPException(status_code=400, detail="Invalid file format. Only MP4, AVI, and MOV are allowed.")
try:
contents = await file.read()
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_input:
tmp_input.write(contents)
input_video_path = tmp_input.name
cap = cv2.VideoCapture(input_video_path)
if not cap.isOpened():
raise HTTPException(status_code=400, detail="Could not open video file.")
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_output:
output_video_path = tmp_output.name
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
while True:
ret, frame = cap.read()
if not ret:
break
detections = detect_emotions(frame)
for det in detections:
bbox = det["bbox"]
label_text = f'{det["emotion"]} ({det["confidence"]:.2f})'
cv2.rectangle(frame, (bbox["x_min"], bbox["y_min"]), (bbox["x_max"], bbox["y_max"]), (0, 255, 0), 2)
cv2.putText(frame, label_text, (bbox["x_min"], bbox["y_min"] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
out.write(frame)
cap.release()
out.release()
with open(output_video_path, "rb") as f:
video_bytes = f.read()
os.remove(input_video_path)
os.remove(output_video_path)
return StreamingResponse(io.BytesIO(video_bytes), media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error processing video: {str(e)}")
finally:
await file.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)