File size: 12,375 Bytes
6ebb0fb
 
 
 
 
 
 
 
 
7bc8d30
6ebb0fb
f589e51
 
6ebb0fb
 
 
 
 
 
 
 
6369a6a
6ebb0fb
 
 
5a80058
 
9caee78
 
6ebb0fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc8d30
6ebb0fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f589e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ebb0fb
 
 
 
 
 
 
 
 
 
 
7bc8d30
 
6ebb0fb
 
 
 
f589e51
 
6ebb0fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc8d30
6ebb0fb
 
f589e51
6ebb0fb
 
f589e51
6ebb0fb
 
 
 
 
 
a62923a
6ebb0fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc8d30
 
6ebb0fb
 
 
 
f589e51
 
6ebb0fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc8d30
6ebb0fb
 
 
f589e51
 
6ebb0fb
a62923a
6ebb0fb
 
 
 
 
 
 
 
 
 
 
 
 
a62923a
6ebb0fb
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import pandas as pd
import json
import numpy as np

# Define game order
GAME_ORDER = [
    "Super Mario Bros",
    "Sokoban",
    "2048",
    "Candy Crush",
    "Tetris (complete)",
    "Tetris (planning only)",
    "Ace Attorney"
]

def get_organization(model_name):
    m = model_name.lower()
    if "claude" in m:
        return "anthropic"
    elif "gemini" in m:
        return "google"
    elif "o1" in m or "gpt" in m or "o3" in m or "o4" in m:
        return "openai"
    elif "deepseek" in m:
        return "deepseek"
    elif "llama" in m:
        return "meta"
    elif "grok" in m:
        return "xai"
    else:
        return "unknown"

def get_mario_leaderboard(rank_data):
    data = rank_data.get("Super Mario Bros", {}).get("results", [])
    df = pd.DataFrame(data)
    df = df.rename(columns={
        "model": "Player", 
        "progress": "Progress (current/total)", 
        "score": "Score", 
        "time_s": "Time (s)"
    })
    df["Organization"] = df["Player"].apply(get_organization)
    df = df[["Player", "Organization", "Progress (current/total)", "Score", "Time (s)"]]
    return df

def get_sokoban_leaderboard(rank_data):
    data = rank_data.get("Sokoban", {}).get("results", [])
    df = pd.DataFrame(data)
    df = df.rename(columns={
        "model": "Player", 
        "levels_cracked": "Levels Cracked", 
        "steps": "Steps"
    })
    df["Organization"] = df["Player"].apply(get_organization)
    df = df[["Player", "Organization", "Levels Cracked", "Steps"]]
    return df

def get_2048_leaderboard(rank_data):
    data = rank_data.get("2048", {}).get("results", [])
    df = pd.DataFrame(data)
    df = df.rename(columns={
        "model": "Player", 
        "score": "Score", 
        "steps": "Steps", 
        "time": "Time"
    })
    df["Organization"] = df["Player"].apply(get_organization)
    df = df[["Player", "Organization", "Score", "Steps", "Time"]]
    return df

def get_candy_leaderboard(rank_data):
    data = rank_data.get("Candy Crush", {}).get("results", [])
    df = pd.DataFrame(data)
    df = df.rename(columns={
        "model": "Player", 
        "score_runs": "Score Runs", 
        "average_score": "Average Score", 
        "steps": "Steps"
    })
    df["Organization"] = df["Player"].apply(get_organization)
    df = df[["Player", "Organization", "Score Runs", "Average Score", "Steps"]]
    return df

def get_tetris_leaderboard(rank_data):
    data = rank_data.get("Tetris (complete)", {}).get("results", [])
    df = pd.DataFrame(data)
    df = df.rename(columns={
        "model": "Player", 
        "score": "Score", 
        "steps_blocks": "Steps"
    })
    df["Organization"] = df["Player"].apply(get_organization)
    df = df[["Player", "Organization", "Score", "Steps"]]
    return df

def get_tetris_planning_leaderboard(rank_data):
    data = rank_data.get("Tetris (planning only)", {}).get("results", [])
    df = pd.DataFrame(data)
    df = df.rename(columns={
        "model": "Player", 
        "score": "Score", 
        "steps_blocks": "Steps"
    })
    df["Organization"] = df["Player"].apply(get_organization)
    df = df[["Player", "Organization", "Score", "Steps"]]
    return df

def get_ace_attorney_leaderboard(rank_data):
    data = rank_data.get("Ace Attorney", {}).get("results", [])
    df = pd.DataFrame(data)
    df = df.rename(columns={
        "model": "Player",
        "levels_cracked": "Levels Cracked",
        "lives_left": "Lives Left",
        "cracked_details": "Progress",
        "score": "Score",
        "note": "Notes"
    })
    df["Organization"] = df["Player"].apply(get_organization)
    df = df[["Player", "Organization", "Levels Cracked", "Lives Left", "Progress", "Score", "Notes"]]
    return df

def calculate_rank_and_completeness(rank_data, selected_games):
    # Dictionary to store DataFrames for each game
    game_dfs = {}
    
    # Get DataFrames for selected games
    if selected_games.get("Super Mario Bros"):
        game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data)
    if selected_games.get("Sokoban"):
        game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
    if selected_games.get("2048"):
        game_dfs["2048"] = get_2048_leaderboard(rank_data)
    if selected_games.get("Candy Crush"):
        game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
    if selected_games.get("Tetris (complete)"):
        game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
    if selected_games.get("Tetris (planning only)"):
        game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data)
    if selected_games.get("Ace Attorney"):
        game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data)

    # Get all unique players
    all_players = set()
    for df in game_dfs.values():
        all_players.update(df["Player"].unique())
    all_players = sorted(list(all_players))

    # Create results DataFrame
    results = []
    for player in all_players:
        player_data = {
            "Player": player,
            "Organization": get_organization(player)
        }
        ranks = []
        games_played = 0

        # Calculate rank and completeness for each game
        for game in GAME_ORDER:
            if game in game_dfs:
                df = game_dfs[game]
                if player in df["Player"].values:
                    games_played += 1
                    # Get player's score based on game type
                    if game == "Super Mario Bros":
                        player_score = df[df["Player"] == player]["Score"].iloc[0]
                        rank = len(df[df["Score"] > player_score]) + 1
                    elif game == "Sokoban":
                        # Parse Sokoban score string and get maximum level
                        levels_str = df[df["Player"] == player]["Levels Cracked"].iloc[0]
                        try:
                            # Split by semicolon, strip whitespace, filter empty strings, convert to integers
                            levels = [int(x.strip()) for x in levels_str.split(";") if x.strip()]
                            player_score = max(levels) if levels else 0
                        except:
                            player_score = 0
                        # Calculate rank based on maximum level
                        rank = len(df[df["Levels Cracked"].apply(
                            lambda x: max([int(y.strip()) for y in x.split(";") if y.strip()]) > player_score
                        )]) + 1
                    elif game == "2048":
                        player_score = df[df["Player"] == player]["Score"].iloc[0]
                        rank = len(df[df["Score"] > player_score]) + 1
                    elif game == "Candy Crush":
                        player_score = df[df["Player"] == player]["Average Score"].iloc[0]
                        rank = len(df[df["Average Score"] > player_score]) + 1
                    elif game in ["Tetris (complete)", "Tetris (planning only)"]:
                        player_score = df[df["Player"] == player]["Score"].iloc[0]
                        rank = len(df[df["Score"] > player_score]) + 1
                    elif game == "Ace Attorney":
                        player_score = df[df["Player"] == player]["Score"].iloc[0]
                        rank = len(df[df["Score"] > player_score]) + 1

                    ranks.append(rank)
                    player_data[f"{game} Score"] = player_score
                else:
                    player_data[f"{game} Score"] = 'n/a'

        # Calculate average rank and completeness for sorting only
        if ranks:
            player_data["Sort Rank"] = round(np.mean(ranks), 2)
            player_data["Games Played"] = games_played
        else:
            player_data["Sort Rank"] = float('inf')
            player_data["Games Played"] = 0

        results.append(player_data)

    # Create DataFrame and sort by average rank and completeness
    df_results = pd.DataFrame(results)
    if not df_results.empty:
        # Sort by average rank (ascending) and completeness (descending)
        df_results = df_results.sort_values(
            by=["Sort Rank", "Games Played"],
            ascending=[True, False]
        )
        # Drop the sorting columns
        df_results = df_results.drop(["Sort Rank", "Games Played"], axis=1)

    return df_results

def get_combined_leaderboard(rank_data, selected_games):
    """
    Get combined leaderboard for selected games
    
    Args:
        rank_data (dict): Dictionary containing rank data
        selected_games (dict): Dictionary of game names and their selection status
        
    Returns:
        pd.DataFrame: Combined leaderboard DataFrame
    """
    # Dictionary to store DataFrames for each game
    game_dfs = {}
    
    # Get DataFrames for selected games
    if selected_games.get("Super Mario Bros"):
        game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data)
    if selected_games.get("Sokoban"):
        game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
    if selected_games.get("2048"):
        game_dfs["2048"] = get_2048_leaderboard(rank_data)
    if selected_games.get("Candy Crush"):
        game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
    if selected_games.get("Tetris (complete)"):
        game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
    if selected_games.get("Tetris (planning only)"):
        game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data)
    if selected_games.get("Ace Attorney"):
        game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data)

    # Get all unique players
    all_players = set()
    for df in game_dfs.values():
        all_players.update(df["Player"].unique())
    all_players = sorted(list(all_players))

    # Create results DataFrame
    results = []
    for player in all_players:
        player_data = {
            "Player": player,
            "Organization": get_organization(player)
        }

        # Add scores for each game
        for game in GAME_ORDER:
            if game in game_dfs:
                df = game_dfs[game]
                if player in df["Player"].values:
                    if game == "Super Mario Bros":
                        player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
                    elif game == "Sokoban":
                        # Parse Sokoban score string and get maximum level
                        levels_str = df[df["Player"] == player]["Levels Cracked"].iloc[0]
                        try:
                            levels = [int(x.strip()) for x in levels_str.split(";") if x.strip()]
                            player_data[f"{game} Score"] = max(levels) if levels else 0
                        except:
                            player_data[f"{game} Score"] = 0
                    elif game == "2048":
                        player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
                    elif game == "Candy Crush":
                        player_data[f"{game} Score"] = df[df["Player"] == player]["Average Score"].iloc[0]
                    elif game in ["Tetris (complete)", "Tetris (planning only)"]:
                        player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
                    elif game == "Ace Attorney":
                        player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
                else:
                    player_data[f"{game} Score"] = 'n/a'

        results.append(player_data)

    # Create DataFrame
    df_results = pd.DataFrame(results)
    
    # Sort by total score across all games
    if not df_results.empty:
        # Calculate total score for each player
        df_results["Total Score"] = 0
        for game in GAME_ORDER:
            if f"{game} Score" in df_results.columns:
                df_results["Total Score"] += df_results[f"{game} Score"].apply(
                    lambda x: float(x) if x != 'n/a' else 0
                )
        
        # Sort by total score in descending order
        df_results = df_results.sort_values("Total Score", ascending=False)
        
        # Drop the temporary total score column
        df_results = df_results.drop("Total Score", axis=1)

    return df_results