Spaces:
Running
Running
import pandas as pd | |
import json | |
import numpy as np | |
# Define game order | |
GAME_ORDER = [ | |
"Super Mario Bros", | |
"Sokoban", | |
"2048", | |
"Candy Crush", | |
"Tetris (complete)", | |
"Tetris (planning only)", | |
"Ace Attorney" | |
] | |
def get_organization(model_name): | |
m = model_name.lower() | |
if "claude" in m: | |
return "anthropic" | |
elif "gemini" in m: | |
return "google" | |
elif "o1" in m or "gpt" in m or "o3" in m or "o4" in m: | |
return "openai" | |
elif "deepseek" in m: | |
return "deepseek" | |
elif "llama" in m: | |
return "meta" | |
elif "grok" in m: | |
return "xai" | |
else: | |
return "unknown" | |
def get_mario_leaderboard(rank_data): | |
data = rank_data.get("Super Mario Bros", {}).get("results", []) | |
df = pd.DataFrame(data) | |
df = df.rename(columns={ | |
"model": "Player", | |
"progress": "Progress (current/total)", | |
"score": "Score", | |
"time_s": "Time (s)" | |
}) | |
df["Organization"] = df["Player"].apply(get_organization) | |
df = df[["Player", "Organization", "Progress (current/total)", "Score", "Time (s)"]] | |
return df | |
def get_sokoban_leaderboard(rank_data): | |
data = rank_data.get("Sokoban", {}).get("results", []) | |
df = pd.DataFrame(data) | |
df = df.rename(columns={ | |
"model": "Player", | |
"levels_cracked": "Levels Cracked", | |
"steps": "Steps" | |
}) | |
df["Organization"] = df["Player"].apply(get_organization) | |
df = df[["Player", "Organization", "Levels Cracked", "Steps"]] | |
return df | |
def get_2048_leaderboard(rank_data): | |
data = rank_data.get("2048", {}).get("results", []) | |
df = pd.DataFrame(data) | |
df = df.rename(columns={ | |
"model": "Player", | |
"score": "Score", | |
"steps": "Steps", | |
"time": "Time" | |
}) | |
df["Organization"] = df["Player"].apply(get_organization) | |
df = df[["Player", "Organization", "Score", "Steps", "Time"]] | |
return df | |
def get_candy_leaderboard(rank_data): | |
data = rank_data.get("Candy Crush", {}).get("results", []) | |
df = pd.DataFrame(data) | |
df = df.rename(columns={ | |
"model": "Player", | |
"score_runs": "Score Runs", | |
"average_score": "Average Score", | |
"steps": "Steps" | |
}) | |
df["Organization"] = df["Player"].apply(get_organization) | |
df = df[["Player", "Organization", "Score Runs", "Average Score", "Steps"]] | |
return df | |
def get_tetris_leaderboard(rank_data): | |
data = rank_data.get("Tetris (complete)", {}).get("results", []) | |
df = pd.DataFrame(data) | |
df = df.rename(columns={ | |
"model": "Player", | |
"score": "Score", | |
"steps_blocks": "Steps" | |
}) | |
df["Organization"] = df["Player"].apply(get_organization) | |
df = df[["Player", "Organization", "Score", "Steps"]] | |
return df | |
def get_tetris_planning_leaderboard(rank_data): | |
data = rank_data.get("Tetris (planning only)", {}).get("results", []) | |
df = pd.DataFrame(data) | |
df = df.rename(columns={ | |
"model": "Player", | |
"score": "Score", | |
"steps_blocks": "Steps" | |
}) | |
df["Organization"] = df["Player"].apply(get_organization) | |
df = df[["Player", "Organization", "Score", "Steps"]] | |
return df | |
def get_ace_attorney_leaderboard(rank_data): | |
data = rank_data.get("Ace Attorney", {}).get("results", []) | |
df = pd.DataFrame(data) | |
df = df.rename(columns={ | |
"model": "Player", | |
"levels_cracked": "Levels Cracked", | |
"lives_left": "Lives Left", | |
"cracked_details": "Progress", | |
"score": "Score", | |
"note": "Notes" | |
}) | |
df["Organization"] = df["Player"].apply(get_organization) | |
df = df[["Player", "Organization", "Levels Cracked", "Lives Left", "Progress", "Score", "Notes"]] | |
return df | |
def calculate_rank_and_completeness(rank_data, selected_games): | |
# Dictionary to store DataFrames for each game | |
game_dfs = {} | |
# Get DataFrames for selected games | |
if selected_games.get("Super Mario Bros"): | |
game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data) | |
if selected_games.get("Sokoban"): | |
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data) | |
if selected_games.get("2048"): | |
game_dfs["2048"] = get_2048_leaderboard(rank_data) | |
if selected_games.get("Candy Crush"): | |
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data) | |
if selected_games.get("Tetris (complete)"): | |
game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data) | |
if selected_games.get("Tetris (planning only)"): | |
game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data) | |
if selected_games.get("Ace Attorney"): | |
game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data) | |
# Get all unique players | |
all_players = set() | |
for df in game_dfs.values(): | |
all_players.update(df["Player"].unique()) | |
all_players = sorted(list(all_players)) | |
# Create results DataFrame | |
results = [] | |
for player in all_players: | |
player_data = { | |
"Player": player, | |
"Organization": get_organization(player) | |
} | |
ranks = [] | |
games_played = 0 | |
# Calculate rank and completeness for each game | |
for game in GAME_ORDER: | |
if game in game_dfs: | |
df = game_dfs[game] | |
if player in df["Player"].values: | |
games_played += 1 | |
# Get player's score based on game type | |
if game == "Super Mario Bros": | |
player_score = df[df["Player"] == player]["Score"].iloc[0] | |
rank = len(df[df["Score"] > player_score]) + 1 | |
elif game == "Sokoban": | |
# Parse Sokoban score string and get maximum level | |
levels_str = df[df["Player"] == player]["Levels Cracked"].iloc[0] | |
try: | |
# Split by semicolon, strip whitespace, filter empty strings, convert to integers | |
levels = [int(x.strip()) for x in levels_str.split(";") if x.strip()] | |
player_score = max(levels) if levels else 0 | |
except: | |
player_score = 0 | |
# Calculate rank based on maximum level | |
rank = len(df[df["Levels Cracked"].apply( | |
lambda x: max([int(y.strip()) for y in x.split(";") if y.strip()]) > player_score | |
)]) + 1 | |
elif game == "2048": | |
player_score = df[df["Player"] == player]["Score"].iloc[0] | |
rank = len(df[df["Score"] > player_score]) + 1 | |
elif game == "Candy Crush": | |
player_score = df[df["Player"] == player]["Average Score"].iloc[0] | |
rank = len(df[df["Average Score"] > player_score]) + 1 | |
elif game in ["Tetris (complete)", "Tetris (planning only)"]: | |
player_score = df[df["Player"] == player]["Score"].iloc[0] | |
rank = len(df[df["Score"] > player_score]) + 1 | |
elif game == "Ace Attorney": | |
player_score = df[df["Player"] == player]["Score"].iloc[0] | |
rank = len(df[df["Score"] > player_score]) + 1 | |
ranks.append(rank) | |
player_data[f"{game} Score"] = player_score | |
else: | |
player_data[f"{game} Score"] = 'n/a' | |
# Calculate average rank and completeness for sorting only | |
if ranks: | |
player_data["Sort Rank"] = round(np.mean(ranks), 2) | |
player_data["Games Played"] = games_played | |
else: | |
player_data["Sort Rank"] = float('inf') | |
player_data["Games Played"] = 0 | |
results.append(player_data) | |
# Create DataFrame and sort by average rank and completeness | |
df_results = pd.DataFrame(results) | |
if not df_results.empty: | |
# Sort by average rank (ascending) and completeness (descending) | |
df_results = df_results.sort_values( | |
by=["Sort Rank", "Games Played"], | |
ascending=[True, False] | |
) | |
# Drop the sorting columns | |
df_results = df_results.drop(["Sort Rank", "Games Played"], axis=1) | |
return df_results | |
def get_combined_leaderboard(rank_data, selected_games): | |
""" | |
Get combined leaderboard for selected games | |
Args: | |
rank_data (dict): Dictionary containing rank data | |
selected_games (dict): Dictionary of game names and their selection status | |
Returns: | |
pd.DataFrame: Combined leaderboard DataFrame | |
""" | |
# Dictionary to store DataFrames for each game | |
game_dfs = {} | |
# Get DataFrames for selected games | |
if selected_games.get("Super Mario Bros"): | |
game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data) | |
if selected_games.get("Sokoban"): | |
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data) | |
if selected_games.get("2048"): | |
game_dfs["2048"] = get_2048_leaderboard(rank_data) | |
if selected_games.get("Candy Crush"): | |
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data) | |
if selected_games.get("Tetris (complete)"): | |
game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data) | |
if selected_games.get("Tetris (planning only)"): | |
game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data) | |
if selected_games.get("Ace Attorney"): | |
game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data) | |
# Get all unique players | |
all_players = set() | |
for df in game_dfs.values(): | |
all_players.update(df["Player"].unique()) | |
all_players = sorted(list(all_players)) | |
# Create results DataFrame | |
results = [] | |
for player in all_players: | |
player_data = { | |
"Player": player, | |
"Organization": get_organization(player) | |
} | |
# Add scores for each game | |
for game in GAME_ORDER: | |
if game in game_dfs: | |
df = game_dfs[game] | |
if player in df["Player"].values: | |
if game == "Super Mario Bros": | |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0] | |
elif game == "Sokoban": | |
# Parse Sokoban score string and get maximum level | |
levels_str = df[df["Player"] == player]["Levels Cracked"].iloc[0] | |
try: | |
levels = [int(x.strip()) for x in levels_str.split(";") if x.strip()] | |
player_data[f"{game} Score"] = max(levels) if levels else 0 | |
except: | |
player_data[f"{game} Score"] = 0 | |
elif game == "2048": | |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0] | |
elif game == "Candy Crush": | |
player_data[f"{game} Score"] = df[df["Player"] == player]["Average Score"].iloc[0] | |
elif game in ["Tetris (complete)", "Tetris (planning only)"]: | |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0] | |
elif game == "Ace Attorney": | |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0] | |
else: | |
player_data[f"{game} Score"] = 'n/a' | |
results.append(player_data) | |
# Create DataFrame | |
df_results = pd.DataFrame(results) | |
# Sort by total score across all games | |
if not df_results.empty: | |
# Calculate total score for each player | |
df_results["Total Score"] = 0 | |
for game in GAME_ORDER: | |
if f"{game} Score" in df_results.columns: | |
df_results["Total Score"] += df_results[f"{game} Score"].apply( | |
lambda x: float(x) if x != 'n/a' else 0 | |
) | |
# Sort by total score in descending order | |
df_results = df_results.sort_values("Total Score", ascending=False) | |
# Drop the temporary total score column | |
df_results = df_results.drop("Total Score", axis=1) | |
return df_results | |