Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
from transformers import DebertaV2Model, DebertaV2PreTrainedModel | |
class DebertaV3ForCustomClassification(DebertaV2PreTrainedModel): | |
def __init__(self, config): | |
super().__init__(config) | |
self.deberta = DebertaV2Model(config) # 使用 DebertaV2 作为基础模型 | |
self.dropout = nn.Dropout(0.1) # 添加一个 dropout 层 | |
self.classifier = nn.Linear( | |
config.hidden_size, config.num_labels) # fully connected 层 | |
self.config = config # 保存配置 | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, labels=None): | |
# 获取 DeBERTaV3 的输出 | |
outputs = self.deberta( | |
input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) | |
# 使用 Mean Pooling | |
# [batch_size, seq_len, hidden_size] | |
last_hidden_state = outputs.last_hidden_state | |
# [batch_size, hidden_size] | |
pooled_output = torch.mean(last_hidden_state, dim=1) | |
# Dropout and Fully Connected Layer | |
pooled_output = self.dropout(pooled_output) | |
logits = self.classifier(pooled_output) # [batch_size, num_labels] | |
# 如果提供了标签,则计算损失 | |
loss = None | |
if labels is not None: | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct( | |
logits.view(-1, self.config.num_labels), labels.view(-1)) | |
return (loss, logits) if loss is not None else logits | |