Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
from PIL import Image, ImageDraw, ImageFont | |
from ultralytics import YOLO | |
import numpy as np | |
import os | |
MODEL_PATH = "model/231220_detect_lr_0001_640_brightness.pt" | |
if not os.path.exists(MODEL_PATH): | |
raise FileNotFoundError(f"YOLO model not found at '{MODEL_PATH}'.") | |
model = YOLO(MODEL_PATH) | |
print("YOLO model loaded.") | |
def detect_plastic_pellets(input_image, threshold=0.5): | |
""" | |
Perform plastic pellet detection using our customized YOLO model. | |
Returns the processed image and the number of detections. | |
""" | |
if input_image is None: | |
error_image = Image.new('RGB', (500, 100), color=(255, 0, 0)) | |
draw = ImageDraw.Draw(error_image) | |
try: | |
font = ImageFont.truetype("arial.ttf", size=15) | |
except IOError: | |
font = ImageFont.load_default() | |
draw.text((10, 40), "Please upload a valid image.", fill=(255, 255, 255), font=font) | |
return error_image, 0 # Returning 0 detections | |
try: | |
print("Starting detection with threshold:", threshold) | |
input_image.thumbnail((1024, 1024), Image.LANCZOS) | |
img = np.array(input_image.convert("RGB")) | |
results = model(img) | |
draw = ImageDraw.Draw(input_image) | |
try: | |
font = ImageFont.truetype("arial.ttf", size=15) | |
except IOError: | |
font = ImageFont.load_default() | |
detection_made = False | |
detection_count = 0 # Initialize detection count | |
for result in results: | |
for box in result.boxes: | |
confidence = box.conf[0].item() | |
if confidence < threshold: | |
continue | |
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist()) | |
cls = int(box.cls[0].item()) | |
name = model.names[cls] if model.names else "Object" | |
color = (255, 0, 0) | |
draw.rectangle(((x1, y1), (x2, y2)), outline=color, width=2) | |
label = f"{name} {confidence:.2f}" | |
text_width, text_height = font.getbbox(label)[2:] | |
# Ensure text does not go above the image | |
text_y = max(y1 - text_height, 0) | |
draw.rectangle(((x1, text_y), (x1 + text_width, y1)), fill=color) | |
draw.text((x1, text_y), label, fill=(255, 255, 255), font=font) | |
detection_made = True | |
detection_count += 1 # Increment detection count | |
if not detection_made: | |
draw.text((10, 10), "No plastic pellets detected.", fill=(255, 0, 0), font=font) | |
print("Detection completed. Total detections:", detection_count) | |
return input_image, detection_count | |
except Exception as e: | |
print(f"Detection error: {str(e)}") | |
error_image = Image.new('RGB', (500, 100), color=(255, 0, 0)) | |
draw = ImageDraw.Draw(error_image) | |
try: | |
font = ImageFont.truetype("arial.ttf", size=15) | |
except IOError: | |
font = ImageFont.load_default() | |
draw.text((10, 40), f"Error: {str(e)}", fill=(255, 255, 255), font=font) | |
return error_image, 0 # Returning 0 detections on error | |
def main(): | |
with gr.Blocks(css=".gradio-container {max-width: 800px}") as demo: | |
gr.Markdown( | |
""" | |
<h1 align="center">π Beach Plastic Pellet Detection Challenge</h1> | |
<p align="center">Help us clean up beaches from plastic pellets! Upload your beach photos or choose from our samples, and contribute to data collection for a cleaner environment.</p> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="π Upload or Select Beach Image", interactive=True) | |
examples = [ | |
'images/image1.bmp', | |
'images/image2.bmp', | |
'images/image3.bmp', | |
'images/image4.bmp', | |
'images/image5.bmp', | |
'images/image6.bmp' | |
] | |
gr.Examples(examples=examples, inputs=input_image, label="Or choose one of these images") | |
# Slider for confidence threshold | |
confidence_threshold = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.5, | |
step=0.05, | |
label="Confidence Threshold", | |
info="Adjust the confidence threshold for displaying detections." | |
) | |
submit_button = gr.Button("π Detect Plastic Pellets") | |
with gr.Column(): | |
output_image = gr.Image( | |
type="pil", | |
label="β Detection Result", | |
interactive=False, | |
show_download_button=True | |
) | |
detection_count = gr.Text( | |
value="Detections: 0", | |
label="π’ Number of Detections", | |
interactive=False | |
) | |
gr.Markdown( | |
""" | |
--- | |
<p align="center">Β© 2024 Beach Clean-Up Initiative.</p> | |
""" | |
) | |
submit_button.click( | |
fn=detect_plastic_pellets, | |
inputs=[input_image, confidence_threshold], | |
outputs=[output_image, detection_count], | |
api_name="detect", | |
show_progress=True | |
) | |
demo.launch() | |
if __name__ == "__main__": | |
main() | |