zhenology's picture
Upload 3 files
20a54af verified
import gradio as gr
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image
from PIL import Image
# Load your trained model
model = tf.keras.models.load_model("emotion_model.h5") # Ensure this model is in the repo
# Define emotion labels
emotion_labels = ['Anger', 'Disgust', 'Fear', 'Happiness', 'Neutral', 'Sadness', 'Surprise', 'Contempt']
# Function for inference
def predict_emotion(img):
img = img.convert("RGB").resize((48, 48)) # Ensure correct size
img_array = image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0) / 255.0 # Normalize
predictions = model.predict(img_array)
predicted_class = np.argmax(predictions)
confidence = np.max(predictions)
return f"Emotion: {emotion_labels[predicted_class]} (Confidence: {confidence:.2f})"
# Gradio UI
iface = gr.Interface(
fn=predict_emotion,
inputs=gr.Image(type="pil"),
outputs="text",
title="Emotion Detection",
description="Upload an image, and the AI will predict the emotion.",
)
# Run app
iface.launch()