See axolotl config
axolotl version: 0.8.0.dev0
adapter: lora
base_model: Qwen/Qwen2.5-7B-Instruct
bf16: true # Changed to true for full precision (use bf16 if supported by GPU, otherwise use fp16)
load_in_4bit: false # No quantization for adapter
load_in_8bit: false
dataset_processes: 32
datasets:
- message_property_mappings:
content: content
role: role
path: tatsu-lab/alpaca
trust_remote_code: false
type: alpaca
gradient_accumulation_steps: 4
gradient_checkpointing: true
learning_rate: 0.0002
lisa_layers_attribute: model.layers
load_best_model_at_end: false
lora_alpha: 16
lora_dropout: 0.05
lora_r: 8
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
loraplus_lr_embedding: 1.0e-06
lr_scheduler: cosine
max_prompt_len: 512
mean_resizing_embeddings: false
micro_batch_size: 4
num_epochs: 1.0
optimizer: adamw_torch # Changed from 8-bit optimizer to full-precision
output_dir: ./outputs/mymodel-full-lora
pretrain_multipack_attn: true
pretrain_multipack_buffer_size: 10000
qlora_sharded_model_loading: false # No QLoRA used now
ray_num_workers: 1
resources_per_worker:
GPU: 1
sample_packing_bin_size: 200
sample_packing_group_size: 100000
save_only_model: false
save_safetensors: true
sequence_len: 2048
shuffle_merged_datasets: true
skip_prepare_dataset: false
strict: false
train_on_inputs: false
trl:
log_completions: false
ref_model_mixup_alpha: 0.9
ref_model_sync_steps: 64
sync_ref_model: false
use_vllm: false
vllm_device: auto
vllm_dtype: auto
vllm_gpu_memory_utilization: 0.9
use_ray: false
val_set_size: 0.0
weight_decay: 0.0
outputs/mymodel-full-lora
This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the tatsu-lab/alpaca dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 97
- num_epochs: 1.0
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support