stiger1000 commited on
Commit
0c754e7
·
verified ·
1 Parent(s): 48fdca1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -3
README.md CHANGED
@@ -1,3 +1,66 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - moe
5
+ - llm
6
+ - efficient-inference
7
+ pipeline_tag: text-generation
8
+ ---
9
+
10
+ # TC-MoE: Augmenting Mixture of Experts with Ternary Expert Choice
11
+
12
+ ## Model Description
13
+
14
+ TC-MoE is a novel Mixture-of-Experts (MoE) architecture that enhances traditional MoE models through expert space expansion. By applying the ternary set {-1, 0, 1} to each original expert, TC-MoE achieves:
15
+
16
+ - ​**9% reduction** in activated experts compared to Top-K routing
17
+ - ​**1.1% average performance gain** on language understanding benchmarks
18
+ - Flexible efficiency-effectiveness trade-off via reward mechanism
19
+
20
+ Key innovations:
21
+ - 🎯 ​**Ternary Expert Expansion**: Creates parameter-sharing expert variants (-1, 0, +1) without significant computational overhead
22
+ - ⚖️ ​**Adaptive Load Balancing**: Novel load balance loss for expert workload distribution
23
+ - 🎮 ​**Reward-Driven Routing**: Dynamic control of expert activation ratios
24
+
25
+ ## Model Overview
26
+
27
+ - ​**Architecture**: Decoder-only transformer based on LLaMA
28
+ - ​**Pretraining Data**:
29
+ - RedPajama (100B tokens)
30
+ - ​**Model Size**:
31
+ - Base (681M/2.3B params)
32
+
33
+ ## Usage
34
+
35
+ ```python
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer
37
+
38
+ model = AutoModelForCausalLM.from_pretrained("stiger1000/TC-MoE")
39
+ tokenizer = AutoTokenizer.from_pretrained("stiger1000/TC-MoE")
40
+
41
+ inputs = tokenizer("The capital of France is", return_tensors="pt")
42
+ outputs = model.generate(**inputs, max_length=50)
43
+ print(tokenizer.decode(outputs[0]))
44
+ ```
45
+
46
+ ## Training Details
47
+
48
+ - **Optimizer**: AdamW (β₁=0.9, β₂=0.95)
49
+ - **Learning Rate**: 1e-4 with cosine decay
50
+ - **Batch Size**: 4M tokens
51
+ - **Loss Components**:
52
+ - Language Modeling Loss
53
+ - Load Balance Loss (α₁=0.01)
54
+ - Reward Loss (α₂=0.0)
55
+
56
+ ## Citation
57
+ ```bibtex
58
+ @inproceedings{yan2025tcmoe,
59
+ title={TC-MoE: Augmenting Mixture of Experts with Ternary Expert Choice},
60
+ author={Yan, Shen and Bin, Xingyan and Zhang, Sijun and Wang, Yisen and Lin, Zhouchen},
61
+ booktitle={The Thirteenth International Conference on Learning Representations},
62
+ year={2025}
63
+ }
64
+ ```
65
+
66
+ 📚 **Repository**: [GitHub](https://github.com/stiger1000/TC-MoE)