em

This model is a fine-tuned version of microsoft/deberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0866
  • Exact Match Accuracy: 0.4247
  • Precision Micro: 0.7071
  • Recall Micro: 0.4573
  • F1 Micro: 0.5554
  • Precision Macro: 0.5018
  • Recall Macro: 0.3205
  • F1 Macro: 0.3658
  • Classification Report: {'admiration': {'precision': 0.6727941176470589, 'recall': 0.7261904761904762, 'f1-score': 0.6984732824427481, 'support': 504.0}, 'amusement': {'precision': 0.7751677852348994, 'recall': 0.875, 'f1-score': 0.8220640569395018, 'support': 264.0}, 'anger': {'precision': 0.5193798449612403, 'recall': 0.3383838383838384, 'f1-score': 0.40978593272171254, 'support': 198.0}, 'annoyance': {'precision': 0.5454545454545454, 'recall': 0.05625, 'f1-score': 0.10198300283286119, 'support': 320.0}, 'approval': {'precision': 0.6413793103448275, 'recall': 0.26495726495726496, 'f1-score': 0.375, 'support': 351.0}, 'caring': {'precision': 0.6341463414634146, 'recall': 0.1925925925925926, 'f1-score': 0.29545454545454547, 'support': 135.0}, 'confusion': {'precision': 0.64, 'recall': 0.20915032679738563, 'f1-score': 0.31527093596059114, 'support': 153.0}, 'curiosity': {'precision': 0.5093632958801498, 'recall': 0.4788732394366197, 'f1-score': 0.49364791288566245, 'support': 284.0}, 'desire': {'precision': 0.5925925925925926, 'recall': 0.1927710843373494, 'f1-score': 0.2909090909090909, 'support': 83.0}, 'disappointment': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 151.0}, 'disapproval': {'precision': 0.5806451612903226, 'recall': 0.20224719101123595, 'f1-score': 0.3, 'support': 267.0}, 'disgust': {'precision': 0.8235294117647058, 'recall': 0.11382113821138211, 'f1-score': 0.2, 'support': 123.0}, 'embarrassment': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 37.0}, 'excitement': {'precision': 0.6896551724137931, 'recall': 0.1941747572815534, 'f1-score': 0.30303030303030304, 'support': 103.0}, 'fear': {'precision': 0.6551724137931034, 'recall': 0.48717948717948717, 'f1-score': 0.5588235294117647, 'support': 78.0}, 'gratitude': {'precision': 0.9424242424242424, 'recall': 0.8835227272727273, 'f1-score': 0.9120234604105572, 'support': 352.0}, 'grief': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 6.0}, 'joy': {'precision': 0.675, 'recall': 0.5031055900621118, 'f1-score': 0.5765124555160143, 'support': 161.0}, 'love': {'precision': 0.7760617760617761, 'recall': 0.8445378151260504, 'f1-score': 0.8088531187122736, 'support': 238.0}, 'nervousness': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 23.0}, 'optimism': {'precision': 0.6929133858267716, 'recall': 0.4731182795698925, 'f1-score': 0.5623003194888179, 'support': 186.0}, 'pride': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 16.0}, 'realization': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 145.0}, 'relief': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 11.0}, 'remorse': {'precision': 0.6206896551724138, 'recall': 0.6428571428571429, 'f1-score': 0.631578947368421, 'support': 56.0}, 'sadness': {'precision': 0.6823529411764706, 'recall': 0.3717948717948718, 'f1-score': 0.48132780082987553, 'support': 156.0}, 'surprise': {'precision': 0.6470588235294118, 'recall': 0.3900709219858156, 'f1-score': 0.48672566371681414, 'support': 141.0}, 'neutral': {'precision': 0.734206471494607, 'recall': 0.5332960268606604, 'f1-score': 0.6178282009724473, 'support': 1787.0}, 'micro avg': {'precision': 0.7070608355729294, 'recall': 0.45726023068415234, 'f1-score': 0.5553636538092497, 'support': 6329.0}, 'macro avg': {'precision': 0.5017852603045123, 'recall': 0.32049624185387354, 'f1-score': 0.3657711628430001, 'support': 6329.0}, 'weighted avg': {'precision': 0.6478967641689403, 'recall': 0.45726023068415234, 'f1-score': 0.5120091314430566, 'support': 6329.0}, 'samples avg': {'precision': 0.5119464406363244, 'recall': 0.48252564338799836, 'f1-score': 0.4887660463116516, 'support': 6329.0}}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Exact Match Accuracy Precision Micro Recall Micro F1 Micro Precision Macro Recall Macro F1 Macro Classification Report
0.1149 1.0 2714 0.0875 0.4342 0.7093 0.4672 0.5634 0.5096 0.3234 0.3691 {'admiration': {'precision': 0.706766917293233, 'recall': 0.7704918032786885, 'f1-score': 0.7372549019607844, 'support': 488.0}, 'amusement': {'precision': 0.7522123893805309, 'recall': 0.8415841584158416, 'f1-score': 0.794392523364486, 'support': 303.0}, 'anger': {'precision': 0.5093167701863354, 'recall': 0.4205128205128205, 'f1-score': 0.4606741573033708, 'support': 195.0}, 'annoyance': {'precision': 0.5897435897435898, 'recall': 0.07590759075907591, 'f1-score': 0.13450292397660818, 'support': 303.0}, 'approval': {'precision': 0.6013986013986014, 'recall': 0.21662468513853905, 'f1-score': 0.31851851851851853, 'support': 397.0}, 'caring': {'precision': 0.64, 'recall': 0.20915032679738563, 'f1-score': 0.31527093596059114, 'support': 153.0}, 'confusion': {'precision': 0.6444444444444445, 'recall': 0.19078947368421054, 'f1-score': 0.29441624365482233, 'support': 152.0}, 'curiosity': {'precision': 0.5495867768595041, 'recall': 0.5362903225806451, 'f1-score': 0.5428571428571428, 'support': 248.0}, 'desire': {'precision': 0.7857142857142857, 'recall': 0.2857142857142857, 'f1-score': 0.41904761904761906, 'support': 77.0}, 'disappointment': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 163.0}, 'disapproval': {'precision': 0.6891891891891891, 'recall': 0.17465753424657535, 'f1-score': 0.2786885245901639, 'support': 292.0}, 'disgust': {'precision': 0.6363636363636364, 'recall': 0.07216494845360824, 'f1-score': 0.12962962962962962, 'support': 97.0}, 'embarrassment': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 35.0}, 'excitement': {'precision': 0.625, 'recall': 0.15625, 'f1-score': 0.25, 'support': 96.0}, 'fear': {'precision': 0.8043478260869565, 'recall': 0.4111111111111111, 'f1-score': 0.5441176470588235, 'support': 90.0}, 'gratitude': {'precision': 0.9347181008902077, 'recall': 0.8798882681564246, 'f1-score': 0.9064748201438849, 'support': 358.0}, 'grief': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 13.0}, 'joy': {'precision': 0.717948717948718, 'recall': 0.4883720930232558, 'f1-score': 0.5813148788927336, 'support': 172.0}, 'love': {'precision': 0.706081081081081, 'recall': 0.8293650793650794, 'f1-score': 0.7627737226277372, 'support': 252.0}, 'nervousness': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 21.0}, 'optimism': {'precision': 0.7253521126760564, 'recall': 0.49282296650717705, 'f1-score': 0.5868945868945868, 'support': 209.0}, 'pride': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 15.0}, 'realization': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 127.0}, 'relief': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 18.0}, 'remorse': {'precision': 0.7241379310344828, 'recall': 0.6176470588235294, 'f1-score': 0.6666666666666666, 'support': 68.0}, 'sadness': {'precision': 0.5471698113207547, 'recall': 0.40559440559440557, 'f1-score': 0.46586345381526106, 'support': 143.0}, 'surprise': {'precision': 0.6511627906976745, 'recall': 0.43410852713178294, 'f1-score': 0.5209302325581395, 'support': 129.0}, 'neutral': {'precision': 0.7279577995478523, 'recall': 0.5469988674971688, 'f1-score': 0.6246362754607178, 'support': 1766.0}, 'micro avg': {'precision': 0.709255293837735, 'recall': 0.4672413793103448, 'f1-score': 0.5633563261835018, 'support': 6380.0}, 'macro avg': {'precision': 0.5095933132806119, 'recall': 0.32343022595684323, 'f1-score': 0.3691044787493674, 'support': 6380.0}, 'weighted avg': {'precision': 0.6524027035593517, 'recall': 0.4672413793103448, 'f1-score': 0.5181766862517906, 'support': 6380.0}, 'samples avg': {'precision': 0.5241122988082073, 'recall': 0.4924130728590736, 'f1-score': 0.4997849858705, 'support': 6380.0}}

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
10
Safetensors
Model size
139M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for suku9/em

Finetuned
(60)
this model