detr_finetuned_cppe5

This model is a fine-tuned version of microsoft/table-transformer-structure-recognition-v1.1-all on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 3.3083
  • eval_map: 0.0584
  • eval_map_50: 0.1515
  • eval_map_75: 0.0479
  • eval_map_small: -1.0
  • eval_map_medium: 0.007
  • eval_map_large: 0.0646
  • eval_mar_1: 0.0746
  • eval_mar_10: 0.115
  • eval_mar_100: 0.1545
  • eval_mar_small: -1.0
  • eval_mar_medium: 0.0439
  • eval_mar_large: 0.1653
  • eval_map_table: 0.2451
  • eval_mar_100_table: 0.2882
  • eval_map_table column: 0.0237
  • eval_mar_100_table column: 0.1297
  • eval_map_table column header: 0.0245
  • eval_mar_100_table column header: 0.1224
  • eval_map_table projected row header: 0.0003
  • eval_mar_100_table projected row header: 0.0125
  • eval_map_table row: 0.0254
  • eval_mar_100_table row: 0.235
  • eval_map_table spanning cell: 0.0311
  • eval_mar_100_table spanning cell: 0.1393
  • eval_runtime: 80.5383
  • eval_samples_per_second: 0.633
  • eval_steps_per_second: 0.087
  • epoch: 1.0
  • step: 22

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 10

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
119
Safetensors
Model size
28.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for sumitD/detr_finetuned_cppe5