image

HunyuanVideo-Avatar: High-Fidelity Audio-Driven Human Animation for Multiple Characters

Abstract

Recent years have witnessed significant progress in audio-driven human animation. However, critical challenges remain in (i) generating highly dynamic videos while preserving character consistency, (ii) achieving precise emotion alignment between characters and audio, and (iii) enabling multi-character audio-driven animation. To address these challenges, we propose HunyuanVideo-Avatar, a multimodal diffusion transformer (MM-DiT)-based model capable of simultaneously generating dynamic, emotion-controllable, and multi-character dialogue videos. Concretely, HunyuanVideo-Avatar introduces three key innovations: (i) A character image injection module is designed to replace the conventional addition-based character conditioning scheme, eliminating the inherent condition mismatch between training and inference. This ensures the dynamic motion and strong character consistency; (ii) An Audio Emotion Module (AEM) is introduced to extract and transfer the emotional cues from an emotion reference image to the target generated video, enabling fine-grained and accurate emotion style control; (iii) A Face-Aware Audio Adapter (FAA) is proposed to isolate the audio-driven character with latent-level face mask, enabling independent audio injection via cross-attention for multi-character scenarios. These innovations empower HunyuanVideo-Avatar to surpass state-of-the-art methods on benchmark datasets and a newly proposed wild dataset, generating realistic avatars in dynamic, immersive scenarios. The source code and model weights will be released publicly.

HunyuanVideo-Avatar Overall Architecture

image

We propose HunyuanVideo-Avatar, a multi-modal diffusion transformer(MM-DiT)-based model capable of generating dynamic, emotion-controllable, and multi-character dialogue videos.

πŸŽ‰ HunyuanVideo-Avatar Key Features

image

High-Dynamic and Emotion-Controllable Video Generation

HunyuanVideo-Avatar supports animating any input avatar images to high-dynamic and emotion-controllable videos with simple audio conditions. Specifically, it takes as input multi-style avatar images at arbitrary scales and resolutions. The system supports multi-style avatars encompassing photorealistic, cartoon, 3D-rendered, and anthropomorphic characters. Multi-scale generation spanning portrait, upper-body and full-body. It generates videos with high-dynamic foreground and background, achieving superior realistic and naturalness. In addition, the system supports controlling facial emotions of the characters conditioned on input audio.

Various Applications

HunyuanVideo-Avatar supports various downstream tasks and applications. For instance, the system generates talking avatar videos, which could be applied to e-commerce, online streaming, social media video production, etc. In addition, its multi-character animation feature enlarges the application such as video content creation, editing, etc.

πŸš€ Parallel Inference on Multiple GPUs

For example, to generate a video with 8 GPUs, you can use the following command:

cd HunyuanVideo-Avatar

JOBS_DIR=$(dirname $(dirname "$0"))
export PYTHONPATH=./
export MODEL_BASE="./weights"
checkpoint_path=${MODEL_BASE}/ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt

torchrun --nnodes=1 --nproc_per_node=8 --master_port 29605 hymm_sp/sample_batch.py \
    --input 'assets/test.csv' \
    --ckpt ${checkpoint_path} \
    --sample-n-frames 129 \
    --seed 128 \
    --image-size 704 \
    --cfg-scale 7.5 \
    --infer-steps 50 \
    --use-deepcache 1 \
    --flow-shift-eval-video 5.0 \
    --save-path ${OUTPUT_BASEPATH} 

πŸ”‘ Single-gpu Inference

For example, to generate a video with 1 GPU, you can use the following command:

cd HunyuanVideo-Avatar

JOBS_DIR=$(dirname $(dirname "$0"))
export PYTHONPATH=./

export MODEL_BASE=./weights
OUTPUT_BASEPATH=./results-single
checkpoint_path=${MODEL_BASE}/ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt

export DISABLE_SP=1 
CUDA_VISIBLE_DEVICES=0 python3 hymm_sp/sample_gpu_poor.py \
    --input 'assets/test.csv' \
    --ckpt ${checkpoint_path} \
    --sample-n-frames 129 \
    --seed 128 \
    --image-size 704 \
    --cfg-scale 7.5 \
    --infer-steps 50 \
    --use-deepcache 1 \
    --flow-shift-eval-video 5.0 \
    --save-path ${OUTPUT_BASEPATH} \
    --use-fp8 \
    --infer-min

Run with very low VRAM

cd HunyuanVideo-Avatar

JOBS_DIR=$(dirname $(dirname "$0"))
export PYTHONPATH=./

export MODEL_BASE=./weights
OUTPUT_BASEPATH=./results-poor

checkpoint_path=${MODEL_BASE}/ckpts/hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt

export CPU_OFFLOAD=1
CUDA_VISIBLE_DEVICES=0 python3 hymm_sp/sample_gpu_poor.py \
    --input 'assets/test.csv' \
    --ckpt ${checkpoint_path} \
    --sample-n-frames 129 \
    --seed 128 \
    --image-size 704 \
    --cfg-scale 7.5 \
    --infer-steps 50 \
    --use-deepcache 1 \
    --flow-shift-eval-video 5.0 \
    --save-path ${OUTPUT_BASEPATH} \
    --use-fp8 \
    --cpu-offload \
    --infer-min

Run a Gradio Server

cd HunyuanVideo-Avatar

bash ./scripts/run_gradio.sh

πŸ”— BibTeX

If you find HunyuanVideo-Avatar useful for your research and applications, please cite using this BibTeX:

@misc{hu2025HunyuanVideo-Avatar,
      title={HunyuanVideo-Avatar: High-Fidelity Audio-Driven Human Animation for Multiple Characters}, 
      author={Yi Chen and Sen Liang and Zixiang Zhou and Ziyao Huang and Yifeng Ma and Junshu Tang and Qin Lin and Yuan Zhou and Qinglin Lu},
      year={2025},
      eprint={2505.20156},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/pdf/2505.20156}, 
}

Acknowledgements

We would like to thank the contributors to the HunyuanVideo, SD3, FLUX, Llama, LLaVA, Xtuner, diffusers and HuggingFace repositories, for their open research and exploration.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ 7 Ask for provider support

Space using tencent/HunyuanVideo-Avatar 1