zzx0916 commited on
Commit
65d8b03
·
verified ·
1 Parent(s): 928bfe4

Upload 41 files

Browse files
Files changed (41) hide show
  1. ckpts/README.md +268 -0
  2. ckpts/text_encoder_2/.cache/huggingface/.gitignore +1 -0
  3. ckpts/text_encoder_2/.cache/huggingface/download/.gitattributes.lock +0 -0
  4. ckpts/text_encoder_2/.cache/huggingface/download/.gitattributes.metadata +3 -0
  5. ckpts/text_encoder_2/.cache/huggingface/download/README.md.lock +0 -0
  6. ckpts/text_encoder_2/.cache/huggingface/download/README.md.metadata +3 -0
  7. ckpts/text_encoder_2/.cache/huggingface/download/config.json.lock +0 -0
  8. ckpts/text_encoder_2/.cache/huggingface/download/config.json.metadata +3 -0
  9. ckpts/text_encoder_2/.cache/huggingface/download/flax_model.msgpack.lock +0 -0
  10. ckpts/text_encoder_2/.cache/huggingface/download/flax_model.msgpack.metadata +3 -0
  11. ckpts/text_encoder_2/.cache/huggingface/download/merges.txt.lock +0 -0
  12. ckpts/text_encoder_2/.cache/huggingface/download/merges.txt.metadata +3 -0
  13. ckpts/text_encoder_2/.cache/huggingface/download/model.safetensors.lock +0 -0
  14. ckpts/text_encoder_2/.cache/huggingface/download/model.safetensors.metadata +3 -0
  15. ckpts/text_encoder_2/.cache/huggingface/download/preprocessor_config.json.lock +0 -0
  16. ckpts/text_encoder_2/.cache/huggingface/download/preprocessor_config.json.metadata +3 -0
  17. ckpts/text_encoder_2/.cache/huggingface/download/pytorch_model.bin.lock +0 -0
  18. ckpts/text_encoder_2/.cache/huggingface/download/pytorch_model.bin.metadata +3 -0
  19. ckpts/text_encoder_2/.cache/huggingface/download/special_tokens_map.json.lock +0 -0
  20. ckpts/text_encoder_2/.cache/huggingface/download/special_tokens_map.json.metadata +3 -0
  21. ckpts/text_encoder_2/.cache/huggingface/download/tf_model.h5.lock +0 -0
  22. ckpts/text_encoder_2/.cache/huggingface/download/tf_model.h5.metadata +3 -0
  23. ckpts/text_encoder_2/.cache/huggingface/download/tokenizer.json.lock +0 -0
  24. ckpts/text_encoder_2/.cache/huggingface/download/tokenizer.json.metadata +3 -0
  25. ckpts/text_encoder_2/.cache/huggingface/download/tokenizer_config.json.lock +0 -0
  26. ckpts/text_encoder_2/.cache/huggingface/download/tokenizer_config.json.metadata +3 -0
  27. ckpts/text_encoder_2/.cache/huggingface/download/vocab.json.lock +0 -0
  28. ckpts/text_encoder_2/.cache/huggingface/download/vocab.json.metadata +3 -0
  29. ckpts/text_encoder_2/.gitattributes +28 -0
  30. ckpts/text_encoder_2/README.md +145 -0
  31. ckpts/text_encoder_2/config.json +171 -0
  32. ckpts/text_encoder_2/flax_model.msgpack +3 -0
  33. ckpts/text_encoder_2/merges.txt +0 -0
  34. ckpts/text_encoder_2/model.safetensors +3 -0
  35. ckpts/text_encoder_2/preprocessor_config.json +19 -0
  36. ckpts/text_encoder_2/pytorch_model.bin +3 -0
  37. ckpts/text_encoder_2/special_tokens_map.json +1 -0
  38. ckpts/text_encoder_2/tf_model.h5 +3 -0
  39. ckpts/text_encoder_2/tokenizer.json +0 -0
  40. ckpts/text_encoder_2/tokenizer_config.json +34 -0
  41. ckpts/text_encoder_2/vocab.json +0 -0
ckpts/README.md ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-to-video
3
+ license: other
4
+ license_name: tencent-hunyuan-community
5
+ license_link: LICENSE
6
+ ---
7
+
8
+ <!-- ## **HunyuanVideo** -->
9
+
10
+ <p align="center">
11
+ <img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/assets/logo.png" height=100>
12
+ </p>
13
+
14
+ # HunyuanVideo: A Systematic Framework For Large Video Generation Model Training
15
+
16
+ -----
17
+
18
+ This repo contains PyTorch model definitions, pre-trained weights and inference/sampling code for our paper exploring HunyuanVideo. You can find more visualizations on our [project page](https://aivideo.hunyuan.tencent.com).
19
+
20
+ > [**HunyuanVideo: A Systematic Framework For Large Video Generation Model Training**](https://arxiv.org/abs/2412.03603) <br>
21
+
22
+ ## 🔥🔥🔥 News!!
23
+ * Dec 3, 2024: 🤗 We release the inference code and model weights of HunyuanVideo.
24
+
25
+ ## 📑 Open-source Plan
26
+
27
+ - HunyuanVideo (Text-to-Video Model)
28
+ - [x] Inference
29
+ - [x] Checkpoints
30
+ - [ ] Penguin Video Benchmark
31
+ - [ ] Web Demo (Gradio)
32
+ - [ ] ComfyUI
33
+ - [ ] Diffusers
34
+ - HunyuanVideo (Image-to-Video Model)
35
+ - [ ] Inference
36
+ - [ ] Checkpoints
37
+
38
+ ## Contents
39
+ - [HunyuanVideo: A Systematic Framework For Large Video Generation Model Training](#hunyuanvideo--a-systematic-framework-for-large-video-generation-model-training)
40
+ - [🔥🔥🔥 News!!](#-news!!)
41
+ - [📑 Open-source Plan](#-open-source-plan)
42
+ - [Contents](#contents)
43
+ - [**Abstract**](#abstract)
44
+ - [**HunyuanVideo Overall Architechture**](#-hunyuanvideo-overall-architechture)
45
+ - [🎉 **HunyuanVideo Key Features**](#-hunyuanvideo-key-features)
46
+ - [**Unified Image and Video Generative Architecture**](#unified-image-and-video-generative-architecture)
47
+ - [**MLLM Text Encoder**](#mllm-text-encoder)
48
+ - [**3D VAE**](#3d-vae)
49
+ - [**Prompt Rewrite**](#prompt-rewrite)
50
+ - [📈 Comparisons](#-comparisons)
51
+ - [📜 Requirements](#-requirements)
52
+ - [🛠️ Dependencies and Installation](#-dependencies-and-installation)
53
+ - [Installation Guide for Linux](#installation-guide-for-linux)
54
+ - [🧱 Download Pretrained Models](#-download-pretrained-models)
55
+ - [🔑 Inference](#-inference)
56
+ - [Using Command Line](#using-command-line)
57
+ - [More Configurations](#more-configurations)
58
+ - [🔗 BibTeX](#-bibtex)
59
+ - [Acknowledgements](#acknowledgements)
60
+ ---
61
+
62
+ ## **Abstract**
63
+ We present HunyuanVideo, a novel open-source video foundation model that exhibits performance in video generation that is comparable to, if not superior to, leading closed-source models. HunyuanVideo features a comprehensive framework that integrates several key contributions, including data curation, image-video joint model training, and an efficient infrastructure designed to facilitate large-scale model training and inference. Additionally, through an effective strategy for scaling model architecture and dataset, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models.
64
+
65
+ We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion diversity, text-video alignment, and generation stability. According to professional human evaluation results, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and 3 top performing Chinese video generative models. By releasing the code and weights of the foundation model and its applications, we aim to bridge the gap between closed-source and open-source video foundation models. This initiative will empower everyone in the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem.
66
+
67
+ ## **HunyuanVideo Overall Architechture**
68
+
69
+ HunyuanVideo is trained on a spatial-temporally
70
+ compressed latent space, which is compressed through Causal 3D VAE. Text prompts are encoded
71
+ using a large language model, and used as the condition. Gaussian noise and condition are taken as
72
+ input, our generate model generates an output latent, which is decoded to images or videos through
73
+ the 3D VAE decoder.
74
+ <p align="center">
75
+ <img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/assets/overall.png" height=300>
76
+ </p>
77
+
78
+ ## 🎉 **HunyuanVideo Key Features**
79
+ ### **Unified Image and Video Generative Architecture**
80
+ HunyuanVideo introduces the Transformer design and employs a Full Attention mechanism for unified image and video generation.
81
+ Specifically, we use a "Dual-stream to Single-stream" hybrid model design for video generation. In the dual-stream phase, video and text
82
+ tokens are processed independently through multiple Transformer blocks, enabling each modality to learn its own appropriate modulation mechanisms without interference. In the single-stream phase, we concatenate the video and text
83
+ tokens and feed them into subsequent Transformer blocks for effective multimodal information fusion.
84
+ This design captures complex interactions between visual and semantic information, enhancing
85
+ overall model performance.
86
+ <p align="center">
87
+ <img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/assets/backbone.png" height=350>
88
+ </p>
89
+
90
+ ### **MLLM Text Encoder**
91
+ Some previous text-to-video model typically use pretrainednCLIP and T5-XXL as text encoders where CLIP uses Transformer Encoder and T5 uses a Encoder-Decoder structure. In constrast, we utilize a pretrained Multimodal Large Language Model (MLLM) with a Decoder-Only structure as our text encoder, which has following advantages: (i) Compared with T5, MLLM after visual instruction finetuning has better image-text alignment in the feature space, which alleviates the difficulty of instruction following in diffusion models; (ii)
92
+ Compared with CLIP, MLLM has been demonstrated superior ability in image detail description
93
+ and complex reasoning; (iii) MLLM can play as a zero-shot learner by following system instructions prepended to user prompts, helping text features pay more attention to key information. In addition, MLLM is based on causal attention while T5-XXL utilizes bidirectional attention that produces better text guidance for diffusion models. Therefore, we introduce an extra bidirectional token refiner for enhacing text features.
94
+ <p align="center">
95
+ <img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/assets/text_encoder.png" height=275>
96
+ </p>
97
+
98
+ ### **3D VAE**
99
+ HunyuanVideo trains a 3D VAE with CausalConv3D to compress pixel-space videos and images into a compact latent space. We set the compression ratios of video length, space and channel to 4, 8 and 16 respectively. This can significantly reduce the number of tokens for the subsequent diffusion transformer model, allowing us to train videos at the original resolution and frame rate.
100
+ <p align="center">
101
+ <img src="https://raw.githubusercontent.com/Tencent/HunyuanVideo/refs/heads/main/assets/3dvae.png" height=150>
102
+ </p>
103
+
104
+ ### **Prompt Rewrite**
105
+ To address the variability in linguistic style and length of user-provided prompts, we fine-tune the [Hunyuan-Large model](https://github.com/Tencent/Tencent-Hunyuan-Large) as our prompt rewrite model to adapt the original user prompt to model-preferred prompt.
106
+
107
+ We provide two rewrite modes: Normal mode and Master mode, which can be called using different prompts. The Normal mode is designed to enhance the video generation model's comprehension of user intent, facilitating a more accurate interpretation of the instructions provided. The Master mode enhances the description of aspects such as composition, lighting, and camera movement, which leans towards generating videos with a higher visual quality. However, this emphasis may occasionally result in the loss of some semantic details.
108
+
109
+ The Prompt Rewrite Model can be directly deployed and inferred using the [Hunyuan-Large original code](https://github.com/Tencent/Tencent-Hunyuan-Large). We release the weights of the Prompt Rewrite Model [here](https://huggingface.co/Tencent/HunyuanVideo-PromptRewrite).
110
+
111
+ ## 📈 Comparisons
112
+
113
+ To evaluate the performance of HunyuanVideo, we selected five strong baselines from closed-source video generation models. In total, we utilized 1,533 text prompts, generating an equal number of video samples with HunyuanVideo in a single run. For a fair comparison, we conducted inference only once, avoiding any cherry-picking of results. When comparing with the baseline methods, we maintained the default settings for all selected models, ensuring consistent video resolution. Videos were assessed based on three criteria: Text Alignment, Motion Quality and Visual Quality. More than 60 professional evaluators performed the evaluation. Notably, HunyuanVideo demonstrated the best overall performance, particularly excelling in motion quality.
114
+
115
+ <p align="center">
116
+ <table>
117
+ <thead>
118
+ <tr>
119
+ <th rowspan="2">Model</th> <th rowspan="2">Open Source</th> <th>Duration</th> <th>Text Alignment</th> <th>Motion Quality</th> <th rowspan="2">Visual Quality</th> <th rowspan="2">Overall</th> <th rowspan="2">Ranking</th>
120
+ </tr>
121
+ </thead>
122
+ <tbody>
123
+ <tr>
124
+ <td>HunyuanVideo (Ours)</td> <td> ✔ </td> <td>5s</td> <td>61.8%</td> <td>66.5%</td> <td>95.7%</td> <td>41.3%</td> <td>1</td>
125
+ </tr>
126
+ <tr>
127
+ <td>CNTopA (API)</td> <td> &#10008 </td> <td>5s</td> <td>62.6%</td> <td>61.7%</td> <td>95.6%</td> <td>37.7%</td> <td>2</td>
128
+ </tr>
129
+ <tr>
130
+ <td>CNTopB (Web)</td> <td> &#10008</td> <td>5s</td> <td>60.1%</td> <td>62.9%</td> <td>97.7%</td> <td>37.5%</td> <td>3</td>
131
+ </tr>
132
+ <tr>
133
+ <td>GEN-3 alpha (Web)</td> <td>&#10008</td> <td>6s</td> <td>47.7%</td> <td>54.7%</td> <td>97.5%</td> <td>27.4%</td> <td>4</td>
134
+ </tr>
135
+ <tr>
136
+ <td>Luma1.6 (API)</td><td>&#10008</td> <td>5s</td> <td>57.6%</td> <td>44.2%</td> <td>94.1%</td> <td>24.8%</td> <td>6</td>
137
+ </tr>
138
+ <tr>
139
+ <td>CNTopC (Web)</td> <td>&#10008</td> <td>5s</td> <td>48.4%</td> <td>47.2%</td> <td>96.3%</td> <td>24.6%</td> <td>5</td>
140
+ </tr>
141
+ </tbody>
142
+ </table>
143
+ </p>
144
+
145
+ ## 📜 Requirements
146
+
147
+ The following table shows the requirements for running HunyuanVideo model (batch size = 1) to generate videos:
148
+
149
+ | Model | Setting<br/>(height/width/frame) | GPU Peak Memory |
150
+ |:------------:|:--------------------------------:|:----------------:|
151
+ | HunyuanVideo | 720px1280px129f | 60GB |
152
+ | HunyuanVideo | 544px960px129f | 45GB |
153
+
154
+ * An NVIDIA GPU with CUDA support is required.
155
+ * The model is tested on a single 80G GPU.
156
+ * **Minimum**: The minimum GPU memory required is 60GB for 720px1280px129f and 45G for 544px960px129f.
157
+ * **Recommended**: We recommend using a GPU with 80GB of memory for better generation quality.
158
+ * Tested operating system: Linux
159
+
160
+ ## 🛠️ Dependencies and Installation
161
+
162
+ Begin by cloning the repository:
163
+ ```shell
164
+ git clone https://github.com/tencent/HunyuanVideo
165
+ cd HunyuanVideo
166
+ ```
167
+
168
+ ### Installation Guide for Linux
169
+
170
+ We provide an `environment.yml` file for setting up a Conda environment.
171
+ Conda's installation instructions are available [here](https://docs.anaconda.com/free/miniconda/index.html).
172
+
173
+ We recommend CUDA versions 11.8 and 12.0+.
174
+
175
+ ```shell
176
+ # 1. Prepare conda environment
177
+ conda env create -f environment.yml
178
+
179
+ # 2. Activate the environment
180
+ conda activate HunyuanVideo
181
+
182
+ # 3. Install pip dependencies
183
+ python -m pip install -r requirements.txt
184
+
185
+ # 4. Install flash attention v2 for acceleration (requires CUDA 11.8 or above)
186
+ python -m pip install git+https://github.com/Dao-AILab/[email protected]
187
+ ```
188
+
189
+ Additionally, HunyuanVideo also provides a pre-built Docker image:
190
+ [docker_hunyuanvideo](https://hub.docker.com/repository/docker/hunyuanvideo/hunyuanvideo/general).
191
+
192
+ ```shell
193
+ # 1. Use the following link to download the docker image tar file (For CUDA 12).
194
+ wget https://aivideo.hunyuan.tencent.com/download/HunyuanVideo/hunyuan_video_cu12.tar
195
+
196
+ # 2. Import the docker tar file and show the image meta information (For CUDA 12).
197
+ docker load -i hunyuan_video.tar
198
+
199
+ docker image ls
200
+
201
+ # 3. Run the container based on the image
202
+ docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged docker_image_tag
203
+ ```
204
+
205
+
206
+ ## 🧱 Download Pretrained Models
207
+
208
+ The details of download pretrained models are shown [here](https://github.com/Tencent/HunyuanVideo/blob/main/ckpts/README.md).
209
+
210
+ ## 🔑 Inference
211
+ We list the height/width/frame settings we support in the following table.
212
+
213
+ | Resolution | h/w=9:16 | h/w=16:9 | h/w=4:3 | h/w=3:4 | h/w=1:1 |
214
+ |:---------------------:|:----------------------------:|:---------------:|:---------------:|:---------------:|:---------------:|
215
+ | 540p | 544px960px129f | 960px544px129f | 624px832px129f | 832px624px129f | 720px720px129f |
216
+ | 720p (recommended) | 720px1280px129f | 1280px720px129f | 1104px832px129f | 832px1104px129f | 960px960px129f |
217
+
218
+ ### Using Command Line
219
+
220
+ ```bash
221
+ cd HunyuanVideo
222
+
223
+ python3 sample_video.py \
224
+ --video-size 720 1280 \
225
+ --video-length 129 \
226
+ --infer-steps 30 \
227
+ --prompt "a cat is running, realistic." \
228
+ --flow-reverse \
229
+ --seed 0 \
230
+ --use-cpu-offload \
231
+ --save-path ./results
232
+ ```
233
+
234
+ ### More Configurations
235
+
236
+ We list some more useful configurations for easy usage:
237
+
238
+ | Argument | Default | Description |
239
+ |:----------------------:|:---------:|:-----------------------------------------:|
240
+ | `--prompt` | None | The text prompt for video generation |
241
+ | `--video-size` | 720 1280 | The size of the generated video |
242
+ | `--video-length` | 129 | The length of the generated video |
243
+ | `--infer-steps` | 30 | The number of steps for sampling |
244
+ | `--embedded-cfg-scale` | 6.0 | Embeded Classifier free guidance scale |
245
+ | `--flow-shift` | 9.0 | Shift factor for flow matching schedulers |
246
+ | `--flow-reverse` | False | If reverse, learning/sampling from t=1 -> t=0 |
247
+ | `--neg-prompt` | None | The negative prompt for video generation |
248
+ | `--seed` | 0 | The random seed for generating video |
249
+ | `--use-cpu-offload` | False | Use CPU offload for the model load to save more memory, necessary for high-res video generation |
250
+ | `--save-path` | ./results | Path to save the generated video |
251
+
252
+
253
+ ## 🔗 BibTeX
254
+ If you find [HunyuanVideo](https://arxiv.org/abs/2412.03603) useful for your research and applications, please cite using this BibTeX:
255
+
256
+ ```BibTeX
257
+ @misc{kong2024hunyuanvideo,
258
+ title={HunyuanVideo: A Systematic Framework For Large Video Generative Models},
259
+ author={Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, Kathrina Wu, Qin Lin, Aladdin Wang, Andong Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song, Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Junkun Yuan, Kai Wang, Mengyang Liu, Pengyu Li, Shuai Li, Weiyan Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yanxin Long, Yi Chen, Yutao Cui, Yuanbo Peng, Zhentao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Yangyu Tao, Qinglin Lu, Songtao Liu, Dax Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, and Jie Jiang, along with Caesar Zhong},
260
+ year={2024},
261
+ archivePrefix={arXiv preprint arXiv:2412.03603},
262
+ primaryClass={cs.CV}
263
+ }
264
+ ```
265
+
266
+ ## Acknowledgements
267
+ We would like to thank the contributors to the [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium), [FLUX](https://github.com/black-forest-labs/flux), [Llama](https://github.com/meta-llama/llama), [LLaVA](https://github.com/haotian-liu/LLaVA), [Xtuner](https://github.com/InternLM/xtuner), [diffusers](https://github.com/huggingface/diffusers) and [HuggingFace](https://huggingface.co) repositories, for their open research and exploration.
268
+ Additionally, we also thank the Tencent Hunyuan Multimodal team for their help with the text encoder.
ckpts/text_encoder_2/.cache/huggingface/.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ *
ckpts/text_encoder_2/.cache/huggingface/download/.gitattributes.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/.gitattributes.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ 2bf99854609538f90af03c921c41a0cbde670b2f
3
+ 1733648060.452038
ckpts/text_encoder_2/.cache/huggingface/download/README.md.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/README.md.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ 4ccd659d4a0f649d10686540ea4a2b20ff276eda
3
+ 1733648060.3197114
ckpts/text_encoder_2/.cache/huggingface/download/config.json.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/config.json.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ 2c19f6666e0e163c7954df66cb901353fcad088e
3
+ 1733648059.7685747
ckpts/text_encoder_2/.cache/huggingface/download/flax_model.msgpack.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/flax_model.msgpack.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ 156f677ed4495acd1ec7197249c091b85c240267c82f2f7f2e4eae4177931fed
3
+ 1733648082.3625822
ckpts/text_encoder_2/.cache/huggingface/download/merges.txt.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/merges.txt.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ 76e821f1b6f0a9709293c3b6b51ed90980b3166b
3
+ 1733648060.5627046
ckpts/text_encoder_2/.cache/huggingface/download/model.safetensors.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/model.safetensors.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ a2bf730a0c7debf160f7a6b50b3aaf3703e7e88ac73de7a314903141db026dcb
3
+ 1733648082.840822
ckpts/text_encoder_2/.cache/huggingface/download/preprocessor_config.json.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/preprocessor_config.json.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ 5a12a1eb250987a4eee0e3e7d7338c4b22724be1
3
+ 1733648059.9271517
ckpts/text_encoder_2/.cache/huggingface/download/pytorch_model.bin.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/pytorch_model.bin.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ f1a17cdbe0f36fec524f5cafb1c261ea3bbbc13e346e0f74fc9eb0460dedd0d3
3
+ 1733648083.8389857
ckpts/text_encoder_2/.cache/huggingface/download/special_tokens_map.json.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/special_tokens_map.json.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ 9bfb42aa97dcd61e89f279ccaee988bccb4fabae
3
+ 1733648061.4190924
ckpts/text_encoder_2/.cache/huggingface/download/tf_model.h5.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/tf_model.h5.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ 7f154e925c18270d662d28f6261523c2ff6e80f1f05292cb034db41d5951c7a4
3
+ 1733648086.4292495
ckpts/text_encoder_2/.cache/huggingface/download/tokenizer.json.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/tokenizer.json.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ 580c79c6862f31d1f9bd08dd1a415ba0d0502cd9
3
+ 1733648062.3252542
ckpts/text_encoder_2/.cache/huggingface/download/tokenizer_config.json.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/tokenizer_config.json.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ 702bb12920b291cade3706cf215c1604d2255d93
3
+ 1733648061.8902612
ckpts/text_encoder_2/.cache/huggingface/download/vocab.json.lock ADDED
File without changes
ckpts/text_encoder_2/.cache/huggingface/download/vocab.json.metadata ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 32bd64288804d66eefd0ccbe215aa642df71cc41
2
+ 4297ea6a8d2bae1fea8f48b45e257814dcb11f69
3
+ 1733648062.5392745
ckpts/text_encoder_2/.gitattributes ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
ckpts/text_encoder_2/README.md ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - vision
4
+ widget:
5
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png
6
+ candidate_labels: playing music, playing sports
7
+ example_title: Cat & Dog
8
+ ---
9
+
10
+ # Model Card: CLIP
11
+
12
+ Disclaimer: The model card is taken and modified from the official CLIP repository, it can be found [here](https://github.com/openai/CLIP/blob/main/model-card.md).
13
+
14
+ ## Model Details
15
+
16
+ The CLIP model was developed by researchers at OpenAI to learn about what contributes to robustness in computer vision tasks. The model was also developed to test the ability of models to generalize to arbitrary image classification tasks in a zero-shot manner. It was not developed for general model deployment - to deploy models like CLIP, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within.
17
+
18
+ ### Model Date
19
+
20
+ January 2021
21
+
22
+ ### Model Type
23
+
24
+ The base model uses a ViT-L/14 Transformer architecture as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss.
25
+
26
+ The original implementation had two variants: one using a ResNet image encoder and the other using a Vision Transformer. This repository has the variant with the Vision Transformer.
27
+
28
+
29
+ ### Documents
30
+
31
+ - [Blog Post](https://openai.com/blog/clip/)
32
+ - [CLIP Paper](https://arxiv.org/abs/2103.00020)
33
+
34
+
35
+ ### Use with Transformers
36
+
37
+ ```python
38
+ from PIL import Image
39
+ import requests
40
+
41
+ from transformers import CLIPProcessor, CLIPModel
42
+
43
+ model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
44
+ processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
45
+
46
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
47
+ image = Image.open(requests.get(url, stream=True).raw)
48
+
49
+ inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)
50
+
51
+ outputs = model(**inputs)
52
+ logits_per_image = outputs.logits_per_image # this is the image-text similarity score
53
+ probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
54
+ ```
55
+
56
+
57
+ ## Model Use
58
+
59
+ ### Intended Use
60
+
61
+ The model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such models - the CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis.
62
+
63
+ #### Primary intended uses
64
+
65
+ The primary intended users of these models are AI researchers.
66
+
67
+ We primarily imagine the model will be used by researchers to better understand robustness, generalization, and other capabilities, biases, and constraints of computer vision models.
68
+
69
+ ### Out-of-Scope Use Cases
70
+
71
+ **Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.
72
+
73
+ Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
74
+
75
+ Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases.
76
+
77
+
78
+
79
+ ## Data
80
+
81
+ The model was trained on publicly available image-caption data. This was done through a combination of crawling a handful of websites and using commonly-used pre-existing image datasets such as [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). A large portion of the data comes from our crawling of the internet. This means that the data is more representative of people and societies most connected to the internet which tend to skew towards more developed nations, and younger, male users.
82
+
83
+ ### Data Mission Statement
84
+
85
+ Our goal with building this dataset was to test out robustness and generalizability in computer vision tasks. As a result, the focus was on gathering large quantities of data from different publicly-available internet data sources. The data was gathered in a mostly non-interventionist manner. However, we only crawled websites that had policies against excessively violent and adult images and allowed us to filter out such content. We do not intend for this dataset to be used as the basis for any commercial or deployed model and will not be releasing the dataset.
86
+
87
+
88
+
89
+ ## Performance and Limitations
90
+
91
+ ### Performance
92
+
93
+ We have evaluated the performance of CLIP on a wide range of benchmarks across a variety of computer vision datasets such as OCR to texture recognition to fine-grained classification. The paper describes model performance on the following datasets:
94
+
95
+ - Food101
96
+ - CIFAR10
97
+ - CIFAR100
98
+ - Birdsnap
99
+ - SUN397
100
+ - Stanford Cars
101
+ - FGVC Aircraft
102
+ - VOC2007
103
+ - DTD
104
+ - Oxford-IIIT Pet dataset
105
+ - Caltech101
106
+ - Flowers102
107
+ - MNIST
108
+ - SVHN
109
+ - IIIT5K
110
+ - Hateful Memes
111
+ - SST-2
112
+ - UCF101
113
+ - Kinetics700
114
+ - Country211
115
+ - CLEVR Counting
116
+ - KITTI Distance
117
+ - STL-10
118
+ - RareAct
119
+ - Flickr30
120
+ - MSCOCO
121
+ - ImageNet
122
+ - ImageNet-A
123
+ - ImageNet-R
124
+ - ImageNet Sketch
125
+ - ObjectNet (ImageNet Overlap)
126
+ - Youtube-BB
127
+ - ImageNet-Vid
128
+
129
+ ## Limitations
130
+
131
+ CLIP and our analysis of it have a number of limitations. CLIP currently struggles with respect to certain tasks such as fine grained classification and counting objects. CLIP also poses issues with regards to fairness and bias which we discuss in the paper and briefly in the next section. Additionally, our approach to testing CLIP also has an important limitation- in many cases we have used linear probes to evaluate the performance of CLIP and there is evidence suggesting that linear probes can underestimate model performance.
132
+
133
+ ### Bias and Fairness
134
+
135
+ We find that the performance of CLIP - and the specific biases it exhibits - can depend significantly on class design and the choices one makes for categories to include and exclude. We tested the risk of certain kinds of denigration with CLIP by classifying images of people from [Fairface](https://arxiv.org/abs/1908.04913) into crime-related and non-human animal categories. We found significant disparities with respect to race and gender. Additionally, we found that these disparities could shift based on how the classes were constructed. (Details captured in the Broader Impacts Section in the paper).
136
+
137
+ We also tested the performance of CLIP on gender, race and age classification using the Fairface dataset (We default to using race categories as they are constructed in the Fairface dataset.) in order to assess quality of performance across different demographics. We found accuracy >96% across all races for gender classification with ‘Middle Eastern’ having the highest accuracy (98.4%) and ‘White’ having the lowest (96.5%). Additionally, CLIP averaged ~93% for racial classification and ~63% for age classification. Our use of evaluations to test for gender, race and age classification as well as denigration harms is simply to evaluate performance of the model across people and surface potential risks and not to demonstrate an endorsement/enthusiasm for such tasks.
138
+
139
+
140
+
141
+ ## Feedback
142
+
143
+ ### Where to send questions or comments about the model
144
+
145
+ Please use [this Google Form](https://forms.gle/Uv7afRH5dvY34ZEs9)
ckpts/text_encoder_2/config.json ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "clip-vit-large-patch14/",
3
+ "architectures": [
4
+ "CLIPModel"
5
+ ],
6
+ "initializer_factor": 1.0,
7
+ "logit_scale_init_value": 2.6592,
8
+ "model_type": "clip",
9
+ "projection_dim": 768,
10
+ "text_config": {
11
+ "_name_or_path": "",
12
+ "add_cross_attention": false,
13
+ "architectures": null,
14
+ "attention_dropout": 0.0,
15
+ "bad_words_ids": null,
16
+ "bos_token_id": 0,
17
+ "chunk_size_feed_forward": 0,
18
+ "cross_attention_hidden_size": null,
19
+ "decoder_start_token_id": null,
20
+ "diversity_penalty": 0.0,
21
+ "do_sample": false,
22
+ "dropout": 0.0,
23
+ "early_stopping": false,
24
+ "encoder_no_repeat_ngram_size": 0,
25
+ "eos_token_id": 2,
26
+ "finetuning_task": null,
27
+ "forced_bos_token_id": null,
28
+ "forced_eos_token_id": null,
29
+ "hidden_act": "quick_gelu",
30
+ "hidden_size": 768,
31
+ "id2label": {
32
+ "0": "LABEL_0",
33
+ "1": "LABEL_1"
34
+ },
35
+ "initializer_factor": 1.0,
36
+ "initializer_range": 0.02,
37
+ "intermediate_size": 3072,
38
+ "is_decoder": false,
39
+ "is_encoder_decoder": false,
40
+ "label2id": {
41
+ "LABEL_0": 0,
42
+ "LABEL_1": 1
43
+ },
44
+ "layer_norm_eps": 1e-05,
45
+ "length_penalty": 1.0,
46
+ "max_length": 20,
47
+ "max_position_embeddings": 77,
48
+ "min_length": 0,
49
+ "model_type": "clip_text_model",
50
+ "no_repeat_ngram_size": 0,
51
+ "num_attention_heads": 12,
52
+ "num_beam_groups": 1,
53
+ "num_beams": 1,
54
+ "num_hidden_layers": 12,
55
+ "num_return_sequences": 1,
56
+ "output_attentions": false,
57
+ "output_hidden_states": false,
58
+ "output_scores": false,
59
+ "pad_token_id": 1,
60
+ "prefix": null,
61
+ "problem_type": null,
62
+ "projection_dim" : 768,
63
+ "pruned_heads": {},
64
+ "remove_invalid_values": false,
65
+ "repetition_penalty": 1.0,
66
+ "return_dict": true,
67
+ "return_dict_in_generate": false,
68
+ "sep_token_id": null,
69
+ "task_specific_params": null,
70
+ "temperature": 1.0,
71
+ "tie_encoder_decoder": false,
72
+ "tie_word_embeddings": true,
73
+ "tokenizer_class": null,
74
+ "top_k": 50,
75
+ "top_p": 1.0,
76
+ "torch_dtype": null,
77
+ "torchscript": false,
78
+ "transformers_version": "4.16.0.dev0",
79
+ "use_bfloat16": false,
80
+ "vocab_size": 49408
81
+ },
82
+ "text_config_dict": {
83
+ "hidden_size": 768,
84
+ "intermediate_size": 3072,
85
+ "num_attention_heads": 12,
86
+ "num_hidden_layers": 12,
87
+ "projection_dim": 768
88
+ },
89
+ "torch_dtype": "float32",
90
+ "transformers_version": null,
91
+ "vision_config": {
92
+ "_name_or_path": "",
93
+ "add_cross_attention": false,
94
+ "architectures": null,
95
+ "attention_dropout": 0.0,
96
+ "bad_words_ids": null,
97
+ "bos_token_id": null,
98
+ "chunk_size_feed_forward": 0,
99
+ "cross_attention_hidden_size": null,
100
+ "decoder_start_token_id": null,
101
+ "diversity_penalty": 0.0,
102
+ "do_sample": false,
103
+ "dropout": 0.0,
104
+ "early_stopping": false,
105
+ "encoder_no_repeat_ngram_size": 0,
106
+ "eos_token_id": null,
107
+ "finetuning_task": null,
108
+ "forced_bos_token_id": null,
109
+ "forced_eos_token_id": null,
110
+ "hidden_act": "quick_gelu",
111
+ "hidden_size": 1024,
112
+ "id2label": {
113
+ "0": "LABEL_0",
114
+ "1": "LABEL_1"
115
+ },
116
+ "image_size": 224,
117
+ "initializer_factor": 1.0,
118
+ "initializer_range": 0.02,
119
+ "intermediate_size": 4096,
120
+ "is_decoder": false,
121
+ "is_encoder_decoder": false,
122
+ "label2id": {
123
+ "LABEL_0": 0,
124
+ "LABEL_1": 1
125
+ },
126
+ "layer_norm_eps": 1e-05,
127
+ "length_penalty": 1.0,
128
+ "max_length": 20,
129
+ "min_length": 0,
130
+ "model_type": "clip_vision_model",
131
+ "no_repeat_ngram_size": 0,
132
+ "num_attention_heads": 16,
133
+ "num_beam_groups": 1,
134
+ "num_beams": 1,
135
+ "num_hidden_layers": 24,
136
+ "num_return_sequences": 1,
137
+ "output_attentions": false,
138
+ "output_hidden_states": false,
139
+ "output_scores": false,
140
+ "pad_token_id": null,
141
+ "patch_size": 14,
142
+ "prefix": null,
143
+ "problem_type": null,
144
+ "projection_dim" : 768,
145
+ "pruned_heads": {},
146
+ "remove_invalid_values": false,
147
+ "repetition_penalty": 1.0,
148
+ "return_dict": true,
149
+ "return_dict_in_generate": false,
150
+ "sep_token_id": null,
151
+ "task_specific_params": null,
152
+ "temperature": 1.0,
153
+ "tie_encoder_decoder": false,
154
+ "tie_word_embeddings": true,
155
+ "tokenizer_class": null,
156
+ "top_k": 50,
157
+ "top_p": 1.0,
158
+ "torch_dtype": null,
159
+ "torchscript": false,
160
+ "transformers_version": "4.16.0.dev0",
161
+ "use_bfloat16": false
162
+ },
163
+ "vision_config_dict": {
164
+ "hidden_size": 1024,
165
+ "intermediate_size": 4096,
166
+ "num_attention_heads": 16,
167
+ "num_hidden_layers": 24,
168
+ "patch_size": 14,
169
+ "projection_dim": 768
170
+ }
171
+ }
ckpts/text_encoder_2/flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:156f677ed4495acd1ec7197249c091b85c240267c82f2f7f2e4eae4177931fed
3
+ size 1710486359
ckpts/text_encoder_2/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
ckpts/text_encoder_2/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2bf730a0c7debf160f7a6b50b3aaf3703e7e88ac73de7a314903141db026dcb
3
+ size 1710540580
ckpts/text_encoder_2/preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 224,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "resample": 3,
18
+ "size": 224
19
+ }
ckpts/text_encoder_2/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1a17cdbe0f36fec524f5cafb1c261ea3bbbc13e346e0f74fc9eb0460dedd0d3
3
+ size 1710671599
ckpts/text_encoder_2/special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<|startoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": "<|endoftext|>"}
ckpts/text_encoder_2/tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f154e925c18270d662d28f6261523c2ff6e80f1f05292cb034db41d5951c7a4
3
+ size 1711114176
ckpts/text_encoder_2/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
ckpts/text_encoder_2/tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "unk_token": {
3
+ "content": "<|endoftext|>",
4
+ "single_word": false,
5
+ "lstrip": false,
6
+ "rstrip": false,
7
+ "normalized": true,
8
+ "__type": "AddedToken"
9
+ },
10
+ "bos_token": {
11
+ "content": "<|startoftext|>",
12
+ "single_word": false,
13
+ "lstrip": false,
14
+ "rstrip": false,
15
+ "normalized": true,
16
+ "__type": "AddedToken"
17
+ },
18
+ "eos_token": {
19
+ "content": "<|endoftext|>",
20
+ "single_word": false,
21
+ "lstrip": false,
22
+ "rstrip": false,
23
+ "normalized": true,
24
+ "__type": "AddedToken"
25
+ },
26
+ "pad_token": "<|endoftext|>",
27
+ "add_prefix_space": false,
28
+ "errors": "replace",
29
+ "do_lower_case": true,
30
+ "name_or_path": "openai/clip-vit-base-patch32",
31
+ "model_max_length": 77,
32
+ "special_tokens_map_file": "./special_tokens_map.json",
33
+ "tokenizer_class": "CLIPTokenizer"
34
+ }
ckpts/text_encoder_2/vocab.json ADDED
The diff for this file is too large to render. See raw diff