metadata
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
language:
- bg
- ca
- code
- cs
- cy
- da
- de
- el
- en
- es
- et
- eu
- fi
- fr
- ga
- gl
- hr
- hu
- it
- lt
- lv
- mt
- nl
- nn
- \no
- oc
- pl
- pt
- ro
- ru
- sh
- sk
- sl
- sr
- sv
- uk
datasets:
- oscar-corpus/colossal-oscar-1.0
- HuggingFaceFW/fineweb-edu
- joelniklaus/eurlex_resources
- joelniklaus/legal-mc4
- projecte-aina/CATalog
- UFRGS/brwac
- community-datasets/hrwac
- danish-foundation-models/danish-gigaword
- HiTZ/euscrawl
- PleIAs/French-PD-Newspapers
- PleIAs/French-PD-Books
- AI-team-UoA/greek_legal_code
- HiTZ/latxa-corpus-v1.1
- allenai/peS2o
- pile-of-law/pile-of-law
- PORTULAN/parlamento-pt
- hoskinson-center/proof-pile
- togethercomputer/RedPajama-Data-1T
- bigcode/starcoderdata
- bjoernp/tagesschau-2018-2023
- EleutherAI/the_pile_deduplicated
tags:
- TensorBlock
- GGUF
base_model: BSC-LT/ALIA-40b

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
BSC-LT/ALIA-40b - GGUF
This repo contains GGUF format model files for BSC-LT/ALIA-40b.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4658.
Our projects
Awesome MCP Servers | TensorBlock Studio |
---|---|
![]() |
![]() |
A comprehensive collection of Model Context Protocol (MCP) servers. | A lightweight, open, and extensible multi-LLM interaction studio. |
π See what we built π | π See what we built π |
Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format.
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
ALIA-40b-Q2_K.gguf | Q2_K | 15.712 GB | smallest, significant quality loss - not recommended for most purposes |
ALIA-40b-Q3_K_S.gguf | Q3_K_S | 18.202 GB | very small, high quality loss |
ALIA-40b-Q3_K_M.gguf | Q3_K_M | 20.045 GB | very small, high quality loss |
ALIA-40b-Q3_K_L.gguf | Q3_K_L | 21.628 GB | small, substantial quality loss |
ALIA-40b-Q4_0.gguf | Q4_0 | 23.294 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
ALIA-40b-Q4_K_S.gguf | Q4_K_S | 23.449 GB | small, greater quality loss |
ALIA-40b-Q4_K_M.gguf | Q4_K_M | 24.592 GB | medium, balanced quality - recommended |
ALIA-40b-Q5_0.gguf | Q5_0 | 28.086 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
ALIA-40b-Q5_K_S.gguf | Q5_K_S | 28.086 GB | large, low quality loss - recommended |
ALIA-40b-Q5_K_M.gguf | Q5_K_M | 28.754 GB | large, very low quality loss - recommended |
ALIA-40b-Q6_K.gguf | Q6_K | 33.177 GB | very large, extremely low quality loss |
ALIA-40b-Q8_0.gguf | Q8_0 | 42.970 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/ALIA-40b-GGUF --include "ALIA-40b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/ALIA-40b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'