metadata
license: apache-2.0
language:
- en
- zh
base_model: prithivMLmods/Gauss-Opus-14B-R999
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- trl
- vlm
- sft
- code
- math
- TensorBlock
- GGUF
model-index:
- name: Gauss-Opus-14B-R999
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 39.07
name: averaged accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 44.94
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 57.55
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 18.9
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 27.83
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 44.53
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FGauss-Opus-14B-R999
name: Open LLM Leaderboard

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
prithivMLmods/Gauss-Opus-14B-R999 - GGUF
This repo contains GGUF format model files for prithivMLmods/Gauss-Opus-14B-R999.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4882.
Our projects
Awesome MCP Servers | TensorBlock Studio |
---|---|
![]() |
![]() |
A comprehensive collection of Model Context Protocol (MCP) servers. | A lightweight, open, and extensible multi-LLM interaction studio. |
👀 See what we built 👀 | 👀 See what we built 👀 |
<|begin▁of▁sentence|>{system_prompt}<|User|>{prompt}<|Assistant|><think>
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Gauss-Opus-14B-R999-Q2_K.gguf | Q2_K | 0.006 GB | smallest, significant quality loss - not recommended for most purposes |
Gauss-Opus-14B-R999-Q3_K_S.gguf | Q3_K_S | 0.006 GB | very small, high quality loss |
Gauss-Opus-14B-R999-Q3_K_M.gguf | Q3_K_M | 0.006 GB | very small, high quality loss |
Gauss-Opus-14B-R999-Q3_K_L.gguf | Q3_K_L | 0.006 GB | small, substantial quality loss |
Gauss-Opus-14B-R999-Q4_0.gguf | Q4_0 | 0.006 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Gauss-Opus-14B-R999-Q4_K_S.gguf | Q4_K_S | 0.006 GB | small, greater quality loss |
Gauss-Opus-14B-R999-Q4_K_M.gguf | Q4_K_M | 0.006 GB | medium, balanced quality - recommended |
Gauss-Opus-14B-R999-Q5_0.gguf | Q5_0 | 0.006 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Gauss-Opus-14B-R999-Q5_K_S.gguf | Q5_K_S | 0.006 GB | large, low quality loss - recommended |
Gauss-Opus-14B-R999-Q5_K_M.gguf | Q5_K_M | 0.006 GB | large, very low quality loss - recommended |
Gauss-Opus-14B-R999-Q6_K.gguf | Q6_K | 0.006 GB | very large, extremely low quality loss |
Gauss-Opus-14B-R999-Q8_0.gguf | Q8_0 | 0.006 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/Gauss-Opus-14B-R999-GGUF --include "Gauss-Opus-14B-R999-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/Gauss-Opus-14B-R999-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'