Medtulu-4x7B-GGUF / README.md
morriszms's picture
Update README.md
2866ba9 verified
metadata
license: apache-2.0
tags:
  - moe
  - merge
  - epfl-llm/meditron-7b
  - medalpaca/medalpaca-7b
  - chaoyi-wu/PMC_LLAMA_7B_10_epoch
  - allenai/tulu-2-dpo-7b
  - TensorBlock
  - GGUF
base_model: Technoculture/Medtulu-4x7B
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

Technoculture/Medtulu-4x7B - GGUF

This repo contains GGUF format model files for Technoculture/Medtulu-4x7B.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Our projects

Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€
## Prompt template

Model file specification

Filename Quant type File Size Description
Medtulu-4x7B-Q2_K.gguf Q2_K 7.235 GB smallest, significant quality loss - not recommended for most purposes
Medtulu-4x7B-Q3_K_S.gguf Q3_K_S 8.530 GB very small, high quality loss
Medtulu-4x7B-Q3_K_M.gguf Q3_K_M 9.489 GB very small, high quality loss
Medtulu-4x7B-Q3_K_L.gguf Q3_K_L 10.295 GB small, substantial quality loss
Medtulu-4x7B-Q4_0.gguf Q4_0 11.132 GB legacy; small, very high quality loss - prefer using Q3_K_M
Medtulu-4x7B-Q4_K_S.gguf Q4_K_S 11.231 GB small, greater quality loss
Medtulu-4x7B-Q4_K_M.gguf Q4_K_M 11.945 GB medium, balanced quality - recommended
Medtulu-4x7B-Q5_0.gguf Q5_0 13.581 GB legacy; medium, balanced quality - prefer using Q4_K_M
Medtulu-4x7B-Q5_K_S.gguf Q5_K_S 13.581 GB large, low quality loss - recommended
Medtulu-4x7B-Q5_K_M.gguf Q5_K_M 14.000 GB large, very low quality loss - recommended
Medtulu-4x7B-Q6_K.gguf Q6_K 16.184 GB very large, extremely low quality loss
Medtulu-4x7B-Q8_0.gguf Q8_0 20.960 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Medtulu-4x7B-GGUF --include "Medtulu-4x7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Medtulu-4x7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'