WavLM-Large for Broader Accent Classification

Model Description

This model includes the implementation of broader accent classification described in Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits (https://arxiv.org/pdf/2505.14648)

The included English accents are: ['British Isles', 'North America', 'Other']

How to use this model

Download repo

git clone [email protected]:tiantiaf0627/vox-profile-release.git

Install the package

conda create -n vox_profile python=3.8
cd vox-profile-release
pip install -e .

Load the model

# Load libraries
import torch
import torch.nn.functional as F
from src.model.accent.wavlm_accent import WavLMWrapper

# Find device
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"

# Load model from Huggingface
model = WavLMWrapper.from_pretrained("tiantiaf/wavlm-large-broader-accent").to(device)
model.eval()

Prediction

# Label List
english_accent_list = [
    'British Isles', 'North America', 'Other'
]
    
# Load data, here just zeros as the example, audio data should be 16kHz mono channel
data = torch.zeros([1, 16000]).float().to(device)
logits, embeddings = model(data, return_feature=True)
    
# Probability and output
accent_prob = F.softmax(logits, dim=1)
print(english_accent_list[torch.argmax(accent_prob).detach().cpu().item()])

If you have any questions, please contact: Tiantian Feng ([email protected])

Kindly cite our paper if you are using our model or find it useful in your work

@article{feng2025vox,
  title={Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits},
  author={Feng, Tiantian and Lee, Jihwan and Xu, Anfeng and Lee, Yoonjeong and Lertpetchpun, Thanathai and Shi, Xuan and Wang, Helin and Thebaud, Thomas and Moro-Velazquez, Laureano and Byrd, Dani and others},
  journal={arXiv preprint arXiv:2505.14648},
  year={2025}
}
Downloads last month
34
Safetensors
Model size
318M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tiantiaf/wavlm-large-broader-accent

Finetuned
(14)
this model

Datasets used to train tiantiaf/wavlm-large-broader-accent