Whisper-Large for Broad Accent Classification

Model Description

This model includes the implementation of broader accent classification described in Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits (https://arxiv.org/pdf/2505.14648)

The included English accents are:

['British Isles', 'North America', 'Other']

How to use this model

Download repo

git clone [email protected]:tiantiaf0627/vox-profile-release.git

Install the package

conda create -n vox_profile python=3.8
cd vox-profile-release
pip install -e .

Load the model

# Load libraries
import torch
import torch.nn.functional as F
from src.model.accent.whisper_accent import WhisperWrapper

# Find device
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"

# Load model from Huggingface
model = WhisperWrapper.from_pretrained("tiantiaf/whisper-large-v3-broad-accent").to(device)
model.eval()

Prediction

# Label List
english_accent_list = [
    'British Isles', 'North America', 'Other'
]
    
# Load data, here just zeros as the example
# Our training data filters output audio shorter than 3 seconds (unreliable predictions) and longer than 15 seconds (computation limitation)
# So you need to prepare your audio to a maximum of 15 seconds, 16kHz and mono channel
max_audio_length = 15 * 16000
data = torch.zeros([1, 16000]).float().to(device)[:, :max_audio_length]
logits, embeddings = model(data, return_feature=True)
    
# Probability and output
accent_prob = F.softmax(logits, dim=1)
print(english_accent_list[torch.argmax(accent_prob).detach().cpu().item()])

If you have any questions, please contact: Tiantian Feng ([email protected])

Downloads last month
224
Safetensors
Model size
1.55B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tiantiaf/whisper-large-v3-broad-accent

Finetuned
(543)
this model

Dataset used to train tiantiaf/whisper-large-v3-broad-accent