Whisper-Large for Broad Accent Classification
Model Description
This model includes the implementation of broader accent classification described in Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits (https://arxiv.org/pdf/2505.14648)
The included English accents are:
['British Isles', 'North America', 'Other']
How to use this model
Download repo
git clone [email protected]:tiantiaf0627/vox-profile-release.git
Install the package
conda create -n vox_profile python=3.8
cd vox-profile-release
pip install -e .
Load the model
# Load libraries
import torch
import torch.nn.functional as F
from src.model.accent.whisper_accent import WhisperWrapper
# Find device
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# Load model from Huggingface
model = WhisperWrapper.from_pretrained("tiantiaf/whisper-large-v3-broad-accent").to(device)
model.eval()
Prediction
# Label List
english_accent_list = [
'British Isles', 'North America', 'Other'
]
# Load data, here just zeros as the example
# Our training data filters output audio shorter than 3 seconds (unreliable predictions) and longer than 15 seconds (computation limitation)
# So you need to prepare your audio to a maximum of 15 seconds, 16kHz and mono channel
max_audio_length = 15 * 16000
data = torch.zeros([1, 16000]).float().to(device)[:, :max_audio_length]
logits, embeddings = model(data, return_feature=True)
# Probability and output
accent_prob = F.softmax(logits, dim=1)
print(english_accent_list[torch.argmax(accent_prob).detach().cpu().item()])
If you have any questions, please contact: Tiantian Feng ([email protected])
- Downloads last month
- 224
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for tiantiaf/whisper-large-v3-broad-accent
Base model
openai/whisper-large-v3