Whisper Large v3 for Speech Flow (Fluency) Classification
Model Description
This model includes the implementation of speech fluency classification described in Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits (https://arxiv.org/pdf/2505.14648)
The model first predicts the speech with 3-second window size and 1-second step size in
["fluent", "disfluent"]
If the disfluent speech is detected, we predict the disfluent types in:
[
"Block",
"Prolongation",
"Sound Repetition",
"Word Repetition",
"Interjection"
]
How to use this model
Download repo
git clone [email protected]:tiantiaf0627/vox-profile-release.git
Install the package
conda create -n vox_profile python=3.8
cd vox-profile-release
pip install -e .
Load the model
# Load libraries
import torch
import torch.nn.functional as F
from src.model.fluency.whisper_fluency import WhisperWrapper
# Find device
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# Load model from Huggingface
model = WhisperWrapper.from_pretrained("tiantiaf/whisper-large-v3-speech-flow").to(device)
model.eval()
Prediction
audio_data = torch.zeros([1, 16000*10]).float().to(device)
audio_segment = (audio_data.shape[1] - 3*16000) // 16000 + 1
if audio_segment < 1: audio_segment = 1
input_audio = list()
input_audio_length = list()
for idx in range(audio_segment):
input_audio.append(audio_data[0, 16000*idx:16000*idx+3*16000])
input_audio_length.append(torch.tensor(len(audio_data[0, 16000*idx:16000*idx+3*16000])))
input_audio = torch.stack(input_audio, dim=0)
input_audio_length = torch.stack(input_audio_length, dim=0)
Prediction
fluency_outputs, disfluency_type_outputs = model(input_audio, length=input_audio_length)
fluency_prob = F.softmax(fluency_outputs, dim=1).detach().cpu().numpy().astype(float).tolist()
disfluency_type_prob = nn.Sigmoid()(disfluency_type_outputs)
# we can set a higher threshold in practice
disfluency_type_predictions = (disfluency_type_prob > 0.7).int().detach().cpu().numpy().tolist()
disfluency_type_prob = disfluency_type_prob.cpu().numpy().astype(float).tolist()
Now let's gather the predictions for the utterance
utterance_fluency_list = list()
utterance_disfluency_list = list()
for audio_idx in range(audio_segment):
disfluency_type = list()
if fluency_prob[audio_idx][0] > 0.5:
utterance_fluency_list.append("fluent")
else:
# If the prediction is disfluent, then which disfluency type
utterance_fluency_list.append("disfluent")
predictions = disfluency_type_predictions[audio_idx]
for label_idx in range(len(predictions)):
if predictions[label_idx] == 1:
disfluency_type.append(disfluency_type_labels[label_idx])
utterance_disfluency_list.append(disfluency_type)
# Now print how fluent is the utterance
print(utterance_fluency_list)
print(utterance_disfluency_list)
If you have any questions, please contact: Tiantian Feng ([email protected])
Kindly cite our paper if you are using our model or find it useful in your work
@article{feng2025vox,
title={Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits},
author={Feng, Tiantian and Lee, Jihwan and Xu, Anfeng and Lee, Yoonjeong and Lertpetchpun, Thanathai and Shi, Xuan and Wang, Helin and Thebaud, Thomas and Moro-Velazquez, Laureano and Byrd, Dani and others},
journal={arXiv preprint arXiv:2505.14648},
year={2025}
}
- Downloads last month
- 219
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for tiantiaf/whisper-large-v3-speech-flow
Base model
openai/whisper-large-v3