SparseEncoder

This is a Sparse Encoder model trained on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 50368-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: Sparse Encoder
  • Maximum Sequence Length: 8192 tokens
  • Training Dataset:
  • Language: en

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-ModernBERT-nq-fresh")
# Run inference
sentences = [
    'is send in the clowns from a musical',
    'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
    'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 50368)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO NanoNFCorpus NanoNQ
dot_accuracy@1 0.06 0.04 0.06
dot_accuracy@3 0.08 0.14 0.16
dot_accuracy@5 0.1 0.22 0.18
dot_accuracy@10 0.22 0.28 0.3
dot_precision@1 0.06 0.04 0.06
dot_precision@3 0.0267 0.0533 0.0533
dot_precision@5 0.02 0.056 0.036
dot_precision@10 0.022 0.04 0.03
dot_recall@1 0.06 0.0007 0.06
dot_recall@3 0.08 0.0035 0.16
dot_recall@5 0.1 0.0151 0.18
dot_recall@10 0.22 0.0259 0.28
dot_ndcg@10 0.1196 0.0462 0.1595
dot_mrr@10 0.0899 0.1025 0.1233
dot_map@100 0.1084 0.0136 0.141

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.0533
dot_accuracy@3 0.1267
dot_accuracy@5 0.1667
dot_accuracy@10 0.2667
dot_precision@1 0.0533
dot_precision@3 0.0444
dot_precision@5 0.0373
dot_precision@10 0.0307
dot_recall@1 0.0402
dot_recall@3 0.0812
dot_recall@5 0.0984
dot_recall@10 0.1753
dot_ndcg@10 0.1084
dot_mrr@10 0.1052
dot_map@100 0.0876

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 29 characters
    • mean: 46.96 characters
    • max: 93 characters
    • min: 10 characters
    • mean: 582.13 characters
    • max: 2141 characters
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: SpladeLoss with these parameters:
    {'lamda_corpus': 0.08, 'lamda_query': 0.1, 'main_loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    )}
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 30 characters
    • mean: 47.2 characters
    • max: 96 characters
    • min: 58 characters
    • mean: 598.96 characters
    • max: 2480 characters
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: SpladeLoss with these parameters:
    {'lamda_corpus': 0.08, 'lamda_query': 0.1, 'main_loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    )}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 4
  • learning_rate: 5e-06
  • num_train_epochs: 1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {'num_cycles': 0.5}
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-06
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {'num_cycles': 0.5}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
0.5980 14800 0.1534 - - - - -
0.6141 15200 0.1246 - - - - -
0.6303 15600 0.1367 - - - - -
0.6465 16000 0.1492 - - - - -
0.6626 16400 0.1306 - - - - -
0.6788 16800 0.1344 - - - - -
0.6949 17200 0.1317 - - - - -
0.7111 17600 0.1248 - - - - -
0.7273 18000 0.1302 - - - - -
0.7434 18400 0.1172 - - - - -
0.7596 18800 0.1216 - - - - -
0.7758 19200 0.1192 0.2194 0.0934 0.0488 0.1486 0.0969
0.7919 19600 0.128 - - - - -
0.8081 20000 0.1027 - - - - -
0.8242 20400 0.1036 - - - - -
0.8404 20800 0.1121 - - - - -
0.8566 21200 0.1243 - - - - -
0.8727 21600 0.1185 - - - - -
0.8889 22000 0.1112 - - - - -
0.9051 22400 0.1157 - - - - -
0.9212 22800 0.1054 - - - - -
0.9374 23200 0.1157 - - - - -
0.9535 23600 0.1188 - - - - -
0.9697 24000 0.0996 0.2002 0.1325 0.0471 0.1604 0.1134
0.9859 24400 0.1211 - - - - -
1 -1 - - 0.1196 0.0462 0.1595 0.1084

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.169 kWh
  • Carbon Emitted: 0.066 kg of CO2
  • Hours Used: 0.59 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.1.0.dev0
  • Transformers: 4.50.1
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}
Downloads last month
0
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train tomaarsen/splade-ModernBERT-nq-fresh

Evaluation results