SparseEncoder
This is a Sparse Encoder model trained on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 50368-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: Sparse Encoder
- Maximum Sequence Length: 8192 tokens
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-ModernBERT-nq-fresh")
# Run inference
sentences = [
'is send in the clowns from a musical',
'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 50368)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNFCorpus
andNanoNQ
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ |
---|---|---|---|
dot_accuracy@1 | 0.06 | 0.04 | 0.06 |
dot_accuracy@3 | 0.08 | 0.14 | 0.16 |
dot_accuracy@5 | 0.1 | 0.22 | 0.18 |
dot_accuracy@10 | 0.22 | 0.28 | 0.3 |
dot_precision@1 | 0.06 | 0.04 | 0.06 |
dot_precision@3 | 0.0267 | 0.0533 | 0.0533 |
dot_precision@5 | 0.02 | 0.056 | 0.036 |
dot_precision@10 | 0.022 | 0.04 | 0.03 |
dot_recall@1 | 0.06 | 0.0007 | 0.06 |
dot_recall@3 | 0.08 | 0.0035 | 0.16 |
dot_recall@5 | 0.1 | 0.0151 | 0.18 |
dot_recall@10 | 0.22 | 0.0259 | 0.28 |
dot_ndcg@10 | 0.1196 | 0.0462 | 0.1595 |
dot_mrr@10 | 0.0899 | 0.1025 | 0.1233 |
dot_map@100 | 0.1084 | 0.0136 | 0.141 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.0533 |
dot_accuracy@3 | 0.1267 |
dot_accuracy@5 | 0.1667 |
dot_accuracy@10 | 0.2667 |
dot_precision@1 | 0.0533 |
dot_precision@3 | 0.0444 |
dot_precision@5 | 0.0373 |
dot_precision@10 | 0.0307 |
dot_recall@1 | 0.0402 |
dot_recall@3 | 0.0812 |
dot_recall@5 | 0.0984 |
dot_recall@10 | 0.1753 |
dot_ndcg@10 | 0.1084 |
dot_mrr@10 | 0.1052 |
dot_map@100 | 0.0876 |
Training Details
Training Dataset
natural-questions
- Dataset: natural-questions at f9e894e
- Size: 99,000 training samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 29 characters
- mean: 46.96 characters
- max: 93 characters
- min: 10 characters
- mean: 582.13 characters
- max: 2141 characters
- Samples:
query answer who played the father in papa don't preach
Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
where was the location of the battle of hastings
Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
how many puppies can a dog give birth to
Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
- Loss:
SpladeLoss
with these parameters:{'lamda_corpus': 0.08, 'lamda_query': 0.1, 'main_loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() )}
Evaluation Dataset
natural-questions
- Dataset: natural-questions at f9e894e
- Size: 1,000 evaluation samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 30 characters
- mean: 47.2 characters
- max: 96 characters
- min: 58 characters
- mean: 598.96 characters
- max: 2480 characters
- Samples:
query answer where is the tiber river located in italy
Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
what kind of car does jay gatsby drive
Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
who sings if i can dream about you
I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
- Loss:
SpladeLoss
with these parameters:{'lamda_corpus': 0.08, 'lamda_query': 0.1, 'main_loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False}) with MLMTransformer model: ModernBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() )}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4learning_rate
: 5e-06num_train_epochs
: 1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {'num_cycles': 0.5}bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {'num_cycles': 0.5}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
---|---|---|---|---|---|---|---|
0.5980 | 14800 | 0.1534 | - | - | - | - | - |
0.6141 | 15200 | 0.1246 | - | - | - | - | - |
0.6303 | 15600 | 0.1367 | - | - | - | - | - |
0.6465 | 16000 | 0.1492 | - | - | - | - | - |
0.6626 | 16400 | 0.1306 | - | - | - | - | - |
0.6788 | 16800 | 0.1344 | - | - | - | - | - |
0.6949 | 17200 | 0.1317 | - | - | - | - | - |
0.7111 | 17600 | 0.1248 | - | - | - | - | - |
0.7273 | 18000 | 0.1302 | - | - | - | - | - |
0.7434 | 18400 | 0.1172 | - | - | - | - | - |
0.7596 | 18800 | 0.1216 | - | - | - | - | - |
0.7758 | 19200 | 0.1192 | 0.2194 | 0.0934 | 0.0488 | 0.1486 | 0.0969 |
0.7919 | 19600 | 0.128 | - | - | - | - | - |
0.8081 | 20000 | 0.1027 | - | - | - | - | - |
0.8242 | 20400 | 0.1036 | - | - | - | - | - |
0.8404 | 20800 | 0.1121 | - | - | - | - | - |
0.8566 | 21200 | 0.1243 | - | - | - | - | - |
0.8727 | 21600 | 0.1185 | - | - | - | - | - |
0.8889 | 22000 | 0.1112 | - | - | - | - | - |
0.9051 | 22400 | 0.1157 | - | - | - | - | - |
0.9212 | 22800 | 0.1054 | - | - | - | - | - |
0.9374 | 23200 | 0.1157 | - | - | - | - | - |
0.9535 | 23600 | 0.1188 | - | - | - | - | - |
0.9697 | 24000 | 0.0996 | 0.2002 | 0.1325 | 0.0471 | 0.1604 | 0.1134 |
0.9859 | 24400 | 0.1211 | - | - | - | - | - |
1 | -1 | - | - | 0.1196 | 0.0462 | 0.1595 | 0.1084 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.169 kWh
- Carbon Emitted: 0.066 kg of CO2
- Hours Used: 0.59 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.1.0.dev0
- Transformers: 4.50.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{wen2025matryoshkarevisitingsparsecoding,
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
year={2025},
eprint={2503.01776},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.01776},
}
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Dataset used to train tomaarsen/splade-ModernBERT-nq-fresh
Evaluation results
- Dot Accuracy@1 on NanoMSMARCOself-reported0.060
- Dot Accuracy@3 on NanoMSMARCOself-reported0.080
- Dot Accuracy@5 on NanoMSMARCOself-reported0.100
- Dot Accuracy@10 on NanoMSMARCOself-reported0.220
- Dot Precision@1 on NanoMSMARCOself-reported0.060
- Dot Precision@3 on NanoMSMARCOself-reported0.027
- Dot Precision@5 on NanoMSMARCOself-reported0.020
- Dot Precision@10 on NanoMSMARCOself-reported0.022
- Dot Recall@1 on NanoMSMARCOself-reported0.060
- Dot Recall@3 on NanoMSMARCOself-reported0.080